Lemon Exosome-like Nanoparticles-Manipulated Probiotics Protect Mice from C. diff Infection

Summary: Clostridioides difficile (C. diff) is the leading cause of antibiotic-associated colitis. Here, we report that lemon exosome-like nanoparticles (LELNs) manipulated probiotics to inhibit C. diff infection (CDI). LELN-manipulated Lactobacillus rhamnosus GG (LGG) and Streptococcus thermophilus...

Full description

Bibliographic Details
Main Authors: Chao Lei, Jingyao Mu, Yun Teng, Liqing He, Fangyi Xu, Xiangcheng Zhang, Kumaran Sundaram, Anil Kumar, Mukesh K. Sriwastva, Matthew B. Lawrenz, Lifeng Zhang, Jun Yan, Wenke Feng, Craig J. McClain, Xiang Zhang, Huang-Ge Zhang
Format: Article
Language:English
Published: Elsevier 2020-10-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S258900422030763X
Description
Summary:Summary: Clostridioides difficile (C. diff) is the leading cause of antibiotic-associated colitis. Here, we report that lemon exosome-like nanoparticles (LELNs) manipulated probiotics to inhibit C. diff infection (CDI). LELN-manipulated Lactobacillus rhamnosus GG (LGG) and Streptococcus thermophilus ST-21 (STH) (LELN-LS) decrease CDI mortality via an LELN-mediated increase in bile resistance and gut survivability. LELN-LS treatment increases the AhR ligands indole-3-lactic acid (I3LA) and indole-3-carboxaldehyde (I3Ald), leading to induction of IL-22, and increases lactic acid leading to a decrease of C. diff fecal shedding by inhibiting C. diff growth and indole biosynthesis. A synergistic effect between STH and LGG was identified. The STH metabolites inhibit gluconeogenesis of LGG and allow fructose-1,6-bisphosphate (FBP) to accumulate in LGG; accumulated FBP then activates lactate dehydrogenase of LGG (LGG-LDH) and enhances production of lactic acid and the AhR ligand. Our findings provide a new strategy for CDI prevention and treatment with a new type of prebiotics.
ISSN:2589-0042