Exponential Scattering for a Damped Hartree Equation

This note studies the linearly damped generalized Hartree equation <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi><mover accent="true"><mi>u</mi><mo>...

Full description

Bibliographic Details
Main Authors: Talal Alharbi, Salah Boulaaras, Tarek Saanouni
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/1/51
_version_ 1827625594221756416
author Talal Alharbi
Salah Boulaaras
Tarek Saanouni
author_facet Talal Alharbi
Salah Boulaaras
Tarek Saanouni
author_sort Talal Alharbi
collection DOAJ
description This note studies the linearly damped generalized Hartree equation <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi><mover accent="true"><mi>u</mi><mo>˙</mo></mover><mo>−</mo><msup><mrow><mo>(</mo><mo>−</mo><mi mathvariant="sans-serif">Δ</mi><mo>)</mo></mrow><mi>s</mi></msup><mi>u</mi><mo>+</mo><mi>i</mi><mi>a</mi><mi>u</mi><mo>=</mo><mo>±</mo><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mrow><mo stretchy="false">(</mo></mrow><msub><mi>J</mi><mi>γ</mi></msub><msup><mrow><mo>∗</mo><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mi>p</mi></msup><mrow><mo>)</mo><mi>u</mi><mo>,</mo><mspace width="0.166667em"></mspace><mspace width="0.166667em"></mspace><mn>0</mn><mo><</mo><mi>s</mi><mo><</mo><mn>1</mn><mo>,</mo><mspace width="0.166667em"></mspace><mspace width="0.166667em"></mspace><mi>a</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace width="0.166667em"></mspace><mspace width="0.166667em"></mspace><mi>p</mi><mo>≥</mo><mn>2</mn><mo>.</mo></mrow></mrow></semantics></math></inline-formula> Indeed, one proves an exponential scattering of the energy global solutions, with spherically symmetric datum. This means that, for large time, the solution goes exponentially to the solution of the associated free problem <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi><mover accent="true"><mi>u</mi><mo>˙</mo></mover><mo>−</mo><msup><mrow><mo>(</mo><mo>−</mo><mi mathvariant="sans-serif">Δ</mi><mo>)</mo></mrow><mi>s</mi></msup><mi>u</mi><mo>+</mo><mi>i</mi><mi>a</mi><mi>u</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, in <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>H</mi><mi>s</mi></msup></semantics></math></inline-formula> norm. The radial assumption avoids a loss of regularity in Strichartz estimates. The exponential scattering, which means that <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>:</mo><mo>=</mo><msup><mi>e</mi><mrow><mi>a</mi><mi>t</mi></mrow></msup><mi>u</mi></mrow></semantics></math></inline-formula> scatters in <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>H</mi><mi>s</mi></msup></semantics></math></inline-formula>, is proved in the energy sub-critical defocusing regime and in the mass-sub-critical focusing regime. This result is presented because of the gap due to the lack of scattering in the mass sub-critical regime, which seems not to be well understood. In this manuscript, one needs to overcome three technical difficulties which are mixed together: the first one is a fractional Laplace operator, the second one is a Choquard (non-local) source term, including the Hartree-type term when <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula> and the last one is a damping term <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi><mi>a</mi><mi>u</mi></mrow></semantics></math></inline-formula>. In a work in progress, the authors investigate the exponential scattering of global solutions to the above Schrödinger problem, with different kind of damping terms.
first_indexed 2024-03-09T12:39:51Z
format Article
id doaj.art-682c0b4c40ba4a7eb54ab48f90766175
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-09T12:39:51Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-682c0b4c40ba4a7eb54ab48f907661752023-11-30T22:19:33ZengMDPI AGFractal and Fractional2504-31102023-01-01715110.3390/fractalfract7010051Exponential Scattering for a Damped Hartree EquationTalal Alharbi0Salah Boulaaras1Tarek Saanouni2Department of Mathematics, College of Science and Arts in Uglat Asugour, Qassim University, Buraydah 52571, Saudi ArabiaDepartment of Mathematics, College of Sciences and Arts, Qassim University, Ar Rass 58822, Saudi ArabiaDepartment of Mathematics, College of Science and Arts in Uglat Asugour, Qassim University, Buraydah 52571, Saudi ArabiaThis note studies the linearly damped generalized Hartree equation <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi><mover accent="true"><mi>u</mi><mo>˙</mo></mover><mo>−</mo><msup><mrow><mo>(</mo><mo>−</mo><mi mathvariant="sans-serif">Δ</mi><mo>)</mo></mrow><mi>s</mi></msup><mi>u</mi><mo>+</mo><mi>i</mi><mi>a</mi><mi>u</mi><mo>=</mo><mo>±</mo><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mrow><mo stretchy="false">(</mo></mrow><msub><mi>J</mi><mi>γ</mi></msub><msup><mrow><mo>∗</mo><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mi>p</mi></msup><mrow><mo>)</mo><mi>u</mi><mo>,</mo><mspace width="0.166667em"></mspace><mspace width="0.166667em"></mspace><mn>0</mn><mo><</mo><mi>s</mi><mo><</mo><mn>1</mn><mo>,</mo><mspace width="0.166667em"></mspace><mspace width="0.166667em"></mspace><mi>a</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace width="0.166667em"></mspace><mspace width="0.166667em"></mspace><mi>p</mi><mo>≥</mo><mn>2</mn><mo>.</mo></mrow></mrow></semantics></math></inline-formula> Indeed, one proves an exponential scattering of the energy global solutions, with spherically symmetric datum. This means that, for large time, the solution goes exponentially to the solution of the associated free problem <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi><mover accent="true"><mi>u</mi><mo>˙</mo></mover><mo>−</mo><msup><mrow><mo>(</mo><mo>−</mo><mi mathvariant="sans-serif">Δ</mi><mo>)</mo></mrow><mi>s</mi></msup><mi>u</mi><mo>+</mo><mi>i</mi><mi>a</mi><mi>u</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, in <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>H</mi><mi>s</mi></msup></semantics></math></inline-formula> norm. The radial assumption avoids a loss of regularity in Strichartz estimates. The exponential scattering, which means that <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>:</mo><mo>=</mo><msup><mi>e</mi><mrow><mi>a</mi><mi>t</mi></mrow></msup><mi>u</mi></mrow></semantics></math></inline-formula> scatters in <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msup><mi>H</mi><mi>s</mi></msup></semantics></math></inline-formula>, is proved in the energy sub-critical defocusing regime and in the mass-sub-critical focusing regime. This result is presented because of the gap due to the lack of scattering in the mass sub-critical regime, which seems not to be well understood. In this manuscript, one needs to overcome three technical difficulties which are mixed together: the first one is a fractional Laplace operator, the second one is a Choquard (non-local) source term, including the Hartree-type term when <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula> and the last one is a damping term <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi><mi>a</mi><mi>u</mi></mrow></semantics></math></inline-formula>. In a work in progress, the authors investigate the exponential scattering of global solutions to the above Schrödinger problem, with different kind of damping terms.https://www.mdpi.com/2504-3110/7/1/51Choquard equationdampingglobal existenceexponential scattering
spellingShingle Talal Alharbi
Salah Boulaaras
Tarek Saanouni
Exponential Scattering for a Damped Hartree Equation
Fractal and Fractional
Choquard equation
damping
global existence
exponential scattering
title Exponential Scattering for a Damped Hartree Equation
title_full Exponential Scattering for a Damped Hartree Equation
title_fullStr Exponential Scattering for a Damped Hartree Equation
title_full_unstemmed Exponential Scattering for a Damped Hartree Equation
title_short Exponential Scattering for a Damped Hartree Equation
title_sort exponential scattering for a damped hartree equation
topic Choquard equation
damping
global existence
exponential scattering
url https://www.mdpi.com/2504-3110/7/1/51
work_keys_str_mv AT talalalharbi exponentialscatteringforadampedhartreeequation
AT salahboulaaras exponentialscatteringforadampedhartreeequation
AT tareksaanouni exponentialscatteringforadampedhartreeequation