An Optimal Sensor Layout Using the Frequency Response Function Data within a Wide Range of Frequencies

This study presents iterative optimal sensor placement (OSP) techniques using the modal assurance criterion (MAC) and the effective independence (EI) algorithm. The algorithms use the proper orthogonal mode (POM) extracted from the frequency response functions (FRFs) of dynamic systems within a wide...

Full description

Bibliographic Details
Main Authors: Eun-Taik Lee, Hee-Chang Eun
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/10/3778
Description
Summary:This study presents iterative optimal sensor placement (OSP) techniques using the modal assurance criterion (MAC) and the effective independence (EI) algorithm. The algorithms use the proper orthogonal mode (POM) extracted from the frequency response functions (FRFs) of dynamic systems within a wide range of frequencies. The FRF-based OSP method proposed in this study has the merit of reflecting dynamic characteristics, unlike the mode shape-based method. Evaluating the MAC values and the EI indices at each iteration, the DOFs of low contribution to the objective function of candidate sensor DOFs are deleted from master DOFs and moved to slave DOFs. This process is repeated until the sensor number corresponds with the master DOFs. The validity of the proposed methods is illustrated in an example, the sensor layouts by the proposed methods are compared, and the layout inconsistency between the MAC and the EI techniques is analyzed.
ISSN:1424-8220