Physical model simulations of seawater intrusion in unconfined aquifer

The objective of this study is to simulate the seawater intrusion into unconfined aquifer near shoreline and to assessthe effectiveness of its controlling methods by using scaled-down physical models. The intrusion controlled methods studiedhere include fresh water injection, saltwater extraction, a...

Full description

Bibliographic Details
Main Authors: Tanapol Sriapai, Chaowarin Walsri, Decho Phueakphum, Kittitep Fuenkajorn
Format: Article
Language:English
Published: Prince of Songkla University 2012-12-01
Series:Songklanakarin Journal of Science and Technology (SJST)
Subjects:
Online Access:http://rdo.psu.ac.th/sjstweb/journal/34-6/0597-0721-34-6-679-687.pdf
Description
Summary:The objective of this study is to simulate the seawater intrusion into unconfined aquifer near shoreline and to assessthe effectiveness of its controlling methods by using scaled-down physical models. The intrusion controlled methods studiedhere include fresh water injection, saltwater extraction, and subsurface barrier. The results indicate that under natural dynamicequilibrium between the recharge of fresh water and the intrusion well agree with the Ghyben-Herzberg mathematical solution.Fresh water pumping from the aquifer notably move the fresh-salt water interface toward the pumping well, depending on thepumping rates and the head differences (h) between the aquifer recharge and the salt water level. The fresh water injectionmethod is more favorable than the salt water extraction and subsurface barrier method. The fresh water injection rate of about10% of the usage rate can effectively push the interface toward the shoreline, and keeping the pumping well free of salinity.
ISSN:0125-3395