Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight] {Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight under Neumann boundary conditions

In this paper we will study the existence of solutions for the nonhomogeneous elliptic equation with variable exponent $\Delta^2_{p(x)} u=\lambda V(x) |u|^{q(x)-2} u$, in a smooth bounded domain,under Neumann boundary conditions, where $\lambda$ is a positive real number, $p,q: \overline{\Omega} \ri...

Full description

Bibliographic Details
Main Authors: Zakaria El Allali, Said Taarabti, Khalil Ben Haddouch
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2018-01-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/31363
_version_ 1818022262664593408
author Zakaria El Allali
Said Taarabti
Khalil Ben Haddouch
author_facet Zakaria El Allali
Said Taarabti
Khalil Ben Haddouch
author_sort Zakaria El Allali
collection DOAJ
description In this paper we will study the existence of solutions for the nonhomogeneous elliptic equation with variable exponent $\Delta^2_{p(x)} u=\lambda V(x) |u|^{q(x)-2} u$, in a smooth bounded domain,under Neumann boundary conditions, where $\lambda$ is a positive real number, $p,q: \overline{\Omega} \rightarrow \mathbb{R}$, are continuous functions, and $V$ is an indefinite weight function. Considering different situations concerning the growth rates involved in the above quoted problem, we will prove the existence of a continuous family of eigenvalues.
first_indexed 2024-04-14T08:29:54Z
format Article
id doaj.art-685516d219a044feb688b5a44b927579
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-04-14T08:29:54Z
publishDate 2018-01-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-685516d219a044feb688b5a44b9275792022-12-22T02:03:57ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882018-01-0136119521310.5269/bspm.v36i1.3136315359Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight] {Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight under Neumann boundary conditionsZakaria El Allali0Said Taarabti1Khalil Ben Haddouch2Department of Mathematics, and Computer Polydisciplinary Faculty of Nador, The university Mohammed Premier, Oujda, MoroccoDepartment of Mathematics and Computer Polydisciplinary Faculty of Nador, The university Mohammed Premier, Oujda, MoroccoDepartment of Mathematics and Computer Science, Faculty of Science, University Mohammed Premier, Oujda, MoroccoIn this paper we will study the existence of solutions for the nonhomogeneous elliptic equation with variable exponent $\Delta^2_{p(x)} u=\lambda V(x) |u|^{q(x)-2} u$, in a smooth bounded domain,under Neumann boundary conditions, where $\lambda$ is a positive real number, $p,q: \overline{\Omega} \rightarrow \mathbb{R}$, are continuous functions, and $V$ is an indefinite weight function. Considering different situations concerning the growth rates involved in the above quoted problem, we will prove the existence of a continuous family of eigenvalues.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/31363Fourth order elliptic equationvariable exponentNeumann boundary conditionsEkeland variational principle
spellingShingle Zakaria El Allali
Said Taarabti
Khalil Ben Haddouch
Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight] {Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight under Neumann boundary conditions
Boletim da Sociedade Paranaense de Matemática
Fourth order elliptic equation
variable exponent
Neumann boundary conditions
Ekeland variational principle
title Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight] {Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight under Neumann boundary conditions
title_full Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight] {Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight under Neumann boundary conditions
title_fullStr Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight] {Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight under Neumann boundary conditions
title_full_unstemmed Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight] {Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight under Neumann boundary conditions
title_short Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight] {Eigenvalues of the $p(x)-$biharmonic operator with indefinite weight under Neumann boundary conditions
title_sort eigenvalues of the p x biharmonic operator with indefinite weight eigenvalues of the p x biharmonic operator with indefinite weight under neumann boundary conditions
topic Fourth order elliptic equation
variable exponent
Neumann boundary conditions
Ekeland variational principle
url http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/31363
work_keys_str_mv AT zakariaelallali eigenvaluesofthepxbiharmonicoperatorwithindefiniteweighteigenvaluesofthepxbiharmonicoperatorwithindefiniteweightunderneumannboundaryconditions
AT saidtaarabti eigenvaluesofthepxbiharmonicoperatorwithindefiniteweighteigenvaluesofthepxbiharmonicoperatorwithindefiniteweightunderneumannboundaryconditions
AT khalilbenhaddouch eigenvaluesofthepxbiharmonicoperatorwithindefiniteweighteigenvaluesofthepxbiharmonicoperatorwithindefiniteweightunderneumannboundaryconditions