Arkaplan Veri Süresinin Konuşmacı Doğrulama Performansına Etkisi

Gaussian mixture models with universal background model (GMM-UBM) and vector quantization with universal background model (VQ-UBM) are the two well-known classifiers used for speaker verification. Generally, UBM is trained with many hours of speech from a large pool of different speakers. In this st...

Full description

Bibliographic Details
Main Authors: Cemal HANİLÇİ, Figen ERTAŞ
Format: Article
Language:English
Published: Bursa Uludag University 2013-04-01
Series:Uludağ University Journal of The Faculty of Engineering
Subjects:
Online Access:http://mmfdergi.uludag.edu.tr/article/view/5000082467
_version_ 1797917928583069696
author Cemal HANİLÇİ
Figen ERTAŞ
author_facet Cemal HANİLÇİ
Figen ERTAŞ
author_sort Cemal HANİLÇİ
collection DOAJ
description Gaussian mixture models with universal background model (GMM-UBM) and vector quantization with universal background model (VQ-UBM) are the two well-known classifiers used for speaker verification. Generally, UBM is trained with many hours of speech from a large pool of different speakers. In this study, we analyze the effect of data duration used to train UBM on text-independent speaker verification performance using GMM-UBM and VQ-UBM modeling techniques. Experiments carried out NIST 2002 speaker recognition evaluation (SRE) corpus show that background data duration to train UBM has small impact on recognition performance for GMM-UBM and VQ-UBM classifiers
first_indexed 2024-04-10T13:21:22Z
format Article
id doaj.art-68578b92c0cb4b14bd13ceb7156aa38c
institution Directory Open Access Journal
issn 2148-4147
2148-4155
language English
last_indexed 2024-04-10T13:21:22Z
publishDate 2013-04-01
publisher Bursa Uludag University
record_format Article
series Uludağ University Journal of The Faculty of Engineering
spelling doaj.art-68578b92c0cb4b14bd13ceb7156aa38c2023-02-15T16:12:02ZengBursa Uludag UniversityUludağ University Journal of The Faculty of Engineering2148-41472148-41552013-04-0118111111910.17482/uujfe.973555000077171Arkaplan Veri Süresinin Konuşmacı Doğrulama Performansına EtkisiCemal HANİLÇİFigen ERTAŞGaussian mixture models with universal background model (GMM-UBM) and vector quantization with universal background model (VQ-UBM) are the two well-known classifiers used for speaker verification. Generally, UBM is trained with many hours of speech from a large pool of different speakers. In this study, we analyze the effect of data duration used to train UBM on text-independent speaker verification performance using GMM-UBM and VQ-UBM modeling techniques. Experiments carried out NIST 2002 speaker recognition evaluation (SRE) corpus show that background data duration to train UBM has small impact on recognition performance for GMM-UBM and VQ-UBM classifiershttp://mmfdergi.uludag.edu.tr/article/view/5000082467Speaker verification, Gaussian mixture model, Vector Quantization, Universal background model
spellingShingle Cemal HANİLÇİ
Figen ERTAŞ
Arkaplan Veri Süresinin Konuşmacı Doğrulama Performansına Etkisi
Uludağ University Journal of The Faculty of Engineering
Speaker verification, Gaussian mixture model, Vector Quantization, Universal background model
title Arkaplan Veri Süresinin Konuşmacı Doğrulama Performansına Etkisi
title_full Arkaplan Veri Süresinin Konuşmacı Doğrulama Performansına Etkisi
title_fullStr Arkaplan Veri Süresinin Konuşmacı Doğrulama Performansına Etkisi
title_full_unstemmed Arkaplan Veri Süresinin Konuşmacı Doğrulama Performansına Etkisi
title_short Arkaplan Veri Süresinin Konuşmacı Doğrulama Performansına Etkisi
title_sort arkaplan veri suresinin konusmaci dogrulama performansina etkisi
topic Speaker verification, Gaussian mixture model, Vector Quantization, Universal background model
url http://mmfdergi.uludag.edu.tr/article/view/5000082467
work_keys_str_mv AT cemalhanilci arkaplanverisuresininkonusmacıdogrulamaperformansınaetkisi
AT figenertas arkaplanverisuresininkonusmacıdogrulamaperformansınaetkisi