Arkaplan Veri Süresinin Konuşmacı Doğrulama Performansına Etkisi
Gaussian mixture models with universal background model (GMM-UBM) and vector quantization with universal background model (VQ-UBM) are the two well-known classifiers used for speaker verification. Generally, UBM is trained with many hours of speech from a large pool of different speakers. In this st...
Main Authors: | Cemal HANİLÇİ, Figen ERTAŞ |
---|---|
Format: | Article |
Language: | English |
Published: |
Bursa Uludag University
2013-04-01
|
Series: | Uludağ University Journal of The Faculty of Engineering |
Subjects: | |
Online Access: | http://mmfdergi.uludag.edu.tr/article/view/5000082467 |
Similar Items
-
Effects Of Background Data Duration On Speaker Verification Performance
by: Cemal Hani̇lçi̇, et al.
Published: (2013-04-01) -
TÜRKÇE KONUŞMACI DOĞRULAMADA DİL UYUMSUZLUĞUNUN ETKİSİ
by: Cemal Hani̇lçi̇
Published: (2017-04-01) -
Bürünsel Özelliklerin Konuşmacı Tanıma Performansına Etkisi
by: Figen Ertaş, et al.
Published: (2009-08-01) -
Sürekli Saklı Markov Modelleri İle Metinden Bağımsız Konuşmacı Tanıma Parametrelerinin İncelenmesi
by: Cemal Hani̇lçi̇, et al.
Published: (2007-04-01) -
Using Reversed MFCC and IT-EM for Automatic Speaker Verification
by: Sheeraz Memon, et al.
Published: (2012-01-01)