Summary: | Platycodonis Radix (PR), a widely consumed herbal food, and its bioactive constituents, platycodins, have therapeutic potential for lung inflammation. Transient Receptor Potential Ankyrin 1 (TRPA1), which is essential for the control of inflammation, may be involved in the development of inflammation in the lungs. The aim of this study was to determine the TRPA1-targeted effects of PR against pulmonary inflammation and to investigate the affinity of PR constituents for TRPA1 and their potential mechanisms of action. Using a C57BL/6J mouse lipopolysaccharides (LPS) intratracheal instillation pneumonia model and advanced analytical techniques (UPLC-Q-TOF-MS/MS, molecular docking, immuno-fluorescence), five platycodins were isolated from PR, and the interaction between these platycodins and hTRPA1 was verified. Additionally, we analyzed the impact of platycodins on LPS-induced TRPA1 expression and calcium influx in BEAS-2B cells. The results indicated that PR treatment significantly reduced the severity of LPS-triggered inflammation in the mouse model. Interestingly, there was a mild increase in the expression of TRPA1 caused by PR in healthy mice. Among five isolated platycodins identified in the PR extract, Platycodin D<sub>3</sub> (PD<sub>3</sub>) showed the highest affinity for hTRPA1. The interaction between platycodins and TRPA1 was verified through molecular docking methods, highlighting the significance of the S5–S6 pore-forming loop in TRPA1 and the unique structural attributes of platycodins. Furthermore, PD<sub>3</sub> significantly reduced LPS-induced TRPA1 expression and calcium ion influx in BEAS-2B cells, substantiating its own role as an effective TRPA1 modulator. In conclusion, PR and platycodins, especially PD<sub>3</sub>, show promise as potential lung inflammation therapeutics. Further research should explore the precise mechanisms by which platycodins modulate TRPA1 and their broader therapeutic potential.
|