The Bounds of the Edge Number in Generalized Hypertrees

A hypergraph <inline-formula> <math display="inline"> <semantics> <mrow> <mi>H</mi> <mo>=</mo> <mo>(</mo> <mi>V</mi> <mo>,</mo> <mi>&#949;</mi> <mo>)</mo> </mrow> </sema...

Full description

Bibliographic Details
Main Authors: Ke Zhang, Haixing Zhao, Zhonglin Ye, Yu Zhu, Liang Wei
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/1/2
_version_ 1819089740158205952
author Ke Zhang
Haixing Zhao
Zhonglin Ye
Yu Zhu
Liang Wei
author_facet Ke Zhang
Haixing Zhao
Zhonglin Ye
Yu Zhu
Liang Wei
author_sort Ke Zhang
collection DOAJ
description A hypergraph <inline-formula> <math display="inline"> <semantics> <mrow> <mi>H</mi> <mo>=</mo> <mo>(</mo> <mi>V</mi> <mo>,</mo> <mi>&#949;</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is a pair consisting of a vertex set <inline-formula> <math display="inline"> <semantics> <mrow> <mi>V</mi> </mrow> </semantics> </math> </inline-formula>, and a set <inline-formula> <math display="inline"> <semantics> <mi>&#949;</mi> </semantics> </math> </inline-formula> of subsets (the hyperedges of <inline-formula> <math display="inline"> <semantics> <mi>H</mi> </semantics> </math> </inline-formula>) of <inline-formula> <math display="inline"> <semantics> <mi>V</mi> </semantics> </math> </inline-formula>. A hypergraph <inline-formula> <math display="inline"> <semantics> <mi>H</mi> </semantics> </math> </inline-formula> is <inline-formula> <math display="inline"> <semantics> <mi>r</mi> </semantics> </math> </inline-formula>-uniform if all the hyperedges of <inline-formula> <math display="inline"> <semantics> <mi>H</mi> </semantics> </math> </inline-formula> have the same cardinality <inline-formula> <math display="inline"> <semantics> <mi>r</mi> </semantics> </math> </inline-formula>. Let <inline-formula> <math display="inline"> <semantics> <mi>H</mi> </semantics> </math> </inline-formula> be an <inline-formula> <math display="inline"> <semantics> <mi>r</mi> </semantics> </math> </inline-formula>-uniform hypergraph, we generalize the concept of trees for <inline-formula> <math display="inline"> <semantics> <mi>r</mi> </semantics> </math> </inline-formula>-uniform hypergraphs. We say that an <inline-formula> <math display="inline"> <semantics> <mi>r</mi> </semantics> </math> </inline-formula>-uniform hypergraph <inline-formula> <math display="inline"> <semantics> <mi>H</mi> </semantics> </math> </inline-formula> is a generalized hypertree (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>H</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula>) if <inline-formula> <math display="inline"> <semantics> <mi>H</mi> </semantics> </math> </inline-formula> is disconnected after removing any hyperedge <inline-formula> <math display="inline"> <semantics> <mi>E</mi> </semantics> </math> </inline-formula>, and the number of components of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>H</mi> <mi>T</mi> <mo>&#8722;</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> is a fixed value <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>&nbsp;</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#8804;</mo> <mi>k</mi> <mo>&#8804;</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>. We focus on the case that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>H</mi> <mi>T</mi> <mo>&#8722;</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> has exactly two components. An edge-minimal <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>H</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula> is a <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>H</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula> whose edge set is minimal with respect to inclusion. After considering these definitions, we show that an <inline-formula> <math display="inline"> <semantics> <mi>r</mi> </semantics> </math> </inline-formula>-uniform <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>H</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula> on <inline-formula> <math display="inline"> <semantics> <mi>n</mi> </semantics> </math> </inline-formula> vertices has at least <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>n</mi> <mo>/</mo> <mo stretchy="false">(</mo> <mi>r</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> edges and it has at most <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>&#8722;</mo> <mi>r</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> edges if <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>&#8805;</mo> <mn>3</mn> <mrow> <mo>&nbsp;</mo> <mi>and</mi> <mo>&nbsp;</mo> </mrow> <mi>n</mi> <mo>&#8805;</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>, and the lower and upper bounds on the edge number are sharp. We then discuss the case that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>H</mi> <mi>T</mi> <mo>&#8722;</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> has exactly <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>&nbsp;</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#8804;</mo> <mi>k</mi> <mo>&#8804;</mo> <mi>r</mi> <mo>&#8722;</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> components.
first_indexed 2024-12-21T22:12:44Z
format Article
id doaj.art-685c14448fa24b0499678ac887c5652a
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-21T22:12:44Z
publishDate 2018-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-685c14448fa24b0499678ac887c5652a2022-12-21T18:48:32ZengMDPI AGMathematics2227-73902018-12-0171210.3390/math7010002math7010002The Bounds of the Edge Number in Generalized HypertreesKe Zhang0Haixing Zhao1Zhonglin Ye2Yu Zhu3Liang Wei4School of Computer, Qinghai Normal University, Xining 810008, ChinaSchool of Computer, Qinghai Normal University, Xining 810008, ChinaKey Laboratory of Tibetan Information Processing and Machine Translation in QH, Xining 810008, ChinaSchool of Computer, Qinghai Normal University, Xining 810008, ChinaSchool of mathematics and statistics, Qinghai Normal University, Xining 810008, ChinaA hypergraph <inline-formula> <math display="inline"> <semantics> <mrow> <mi>H</mi> <mo>=</mo> <mo>(</mo> <mi>V</mi> <mo>,</mo> <mi>&#949;</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is a pair consisting of a vertex set <inline-formula> <math display="inline"> <semantics> <mrow> <mi>V</mi> </mrow> </semantics> </math> </inline-formula>, and a set <inline-formula> <math display="inline"> <semantics> <mi>&#949;</mi> </semantics> </math> </inline-formula> of subsets (the hyperedges of <inline-formula> <math display="inline"> <semantics> <mi>H</mi> </semantics> </math> </inline-formula>) of <inline-formula> <math display="inline"> <semantics> <mi>V</mi> </semantics> </math> </inline-formula>. A hypergraph <inline-formula> <math display="inline"> <semantics> <mi>H</mi> </semantics> </math> </inline-formula> is <inline-formula> <math display="inline"> <semantics> <mi>r</mi> </semantics> </math> </inline-formula>-uniform if all the hyperedges of <inline-formula> <math display="inline"> <semantics> <mi>H</mi> </semantics> </math> </inline-formula> have the same cardinality <inline-formula> <math display="inline"> <semantics> <mi>r</mi> </semantics> </math> </inline-formula>. Let <inline-formula> <math display="inline"> <semantics> <mi>H</mi> </semantics> </math> </inline-formula> be an <inline-formula> <math display="inline"> <semantics> <mi>r</mi> </semantics> </math> </inline-formula>-uniform hypergraph, we generalize the concept of trees for <inline-formula> <math display="inline"> <semantics> <mi>r</mi> </semantics> </math> </inline-formula>-uniform hypergraphs. We say that an <inline-formula> <math display="inline"> <semantics> <mi>r</mi> </semantics> </math> </inline-formula>-uniform hypergraph <inline-formula> <math display="inline"> <semantics> <mi>H</mi> </semantics> </math> </inline-formula> is a generalized hypertree (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>H</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula>) if <inline-formula> <math display="inline"> <semantics> <mi>H</mi> </semantics> </math> </inline-formula> is disconnected after removing any hyperedge <inline-formula> <math display="inline"> <semantics> <mi>E</mi> </semantics> </math> </inline-formula>, and the number of components of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>H</mi> <mi>T</mi> <mo>&#8722;</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> is a fixed value <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>&nbsp;</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#8804;</mo> <mi>k</mi> <mo>&#8804;</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>. We focus on the case that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>H</mi> <mi>T</mi> <mo>&#8722;</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> has exactly two components. An edge-minimal <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>H</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula> is a <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>H</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula> whose edge set is minimal with respect to inclusion. After considering these definitions, we show that an <inline-formula> <math display="inline"> <semantics> <mi>r</mi> </semantics> </math> </inline-formula>-uniform <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>H</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula> on <inline-formula> <math display="inline"> <semantics> <mi>n</mi> </semantics> </math> </inline-formula> vertices has at least <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>n</mi> <mo>/</mo> <mo stretchy="false">(</mo> <mi>r</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> edges and it has at most <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>&#8722;</mo> <mi>r</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> edges if <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>&#8805;</mo> <mn>3</mn> <mrow> <mo>&nbsp;</mo> <mi>and</mi> <mo>&nbsp;</mo> </mrow> <mi>n</mi> <mo>&#8805;</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>, and the lower and upper bounds on the edge number are sharp. We then discuss the case that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>H</mi> <mi>T</mi> <mo>&#8722;</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> has exactly <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>&nbsp;</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#8804;</mo> <mi>k</mi> <mo>&#8804;</mo> <mi>r</mi> <mo>&#8722;</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> components.https://www.mdpi.com/2227-7390/7/1/2hypergraphgeneralized hypertreeboundcomponent
spellingShingle Ke Zhang
Haixing Zhao
Zhonglin Ye
Yu Zhu
Liang Wei
The Bounds of the Edge Number in Generalized Hypertrees
Mathematics
hypergraph
generalized hypertree
bound
component
title The Bounds of the Edge Number in Generalized Hypertrees
title_full The Bounds of the Edge Number in Generalized Hypertrees
title_fullStr The Bounds of the Edge Number in Generalized Hypertrees
title_full_unstemmed The Bounds of the Edge Number in Generalized Hypertrees
title_short The Bounds of the Edge Number in Generalized Hypertrees
title_sort bounds of the edge number in generalized hypertrees
topic hypergraph
generalized hypertree
bound
component
url https://www.mdpi.com/2227-7390/7/1/2
work_keys_str_mv AT kezhang theboundsoftheedgenumberingeneralizedhypertrees
AT haixingzhao theboundsoftheedgenumberingeneralizedhypertrees
AT zhonglinye theboundsoftheedgenumberingeneralizedhypertrees
AT yuzhu theboundsoftheedgenumberingeneralizedhypertrees
AT liangwei theboundsoftheedgenumberingeneralizedhypertrees
AT kezhang boundsoftheedgenumberingeneralizedhypertrees
AT haixingzhao boundsoftheedgenumberingeneralizedhypertrees
AT zhonglinye boundsoftheedgenumberingeneralizedhypertrees
AT yuzhu boundsoftheedgenumberingeneralizedhypertrees
AT liangwei boundsoftheedgenumberingeneralizedhypertrees