A novel approach to recognition of Alzheimer’s and Parkinson’s diseases: random subspace ensemble classifier based on deep hybrid features with a super-resolution image
Background Artificial intelligence technologies have great potential in classifying neurodegenerative diseases such as Alzheimer’s and Parkinson’s. These technologies can aid in early diagnosis, enhance classification accuracy, and improve patient access to appropriate treatments. For this purpose,...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
PeerJ Inc.
2024-02-01
|
Series: | PeerJ Computer Science |
Subjects: | |
Online Access: | https://peerj.com/articles/cs-1862.pdf |
_version_ | 1797290070371205120 |
---|---|
author | Adi Alhudhaif |
author_facet | Adi Alhudhaif |
author_sort | Adi Alhudhaif |
collection | DOAJ |
description | Background Artificial intelligence technologies have great potential in classifying neurodegenerative diseases such as Alzheimer’s and Parkinson’s. These technologies can aid in early diagnosis, enhance classification accuracy, and improve patient access to appropriate treatments. For this purpose, we focused on AI-based auto-diagnosis of Alzheimer’s disease, Parkinson’s disease, and healthy MRI images. Methods In the current study, a deep hybrid network based on an ensemble classifier and convolutional neural network was designed. First, a very deep super-resolution neural network was adapted to improve the resolution of MRI images. Low and high-level features were extracted from the images processed with the hybrid deep convolutional neural network. Finally, these deep features are given as input to the k-nearest neighbor (KNN)-based random subspace ensemble classifier. Results A 3-class dataset containing publicly available MRI images was utilized to test the proposed architecture. In experimental works, the proposed model produced 99.11% accuracy, 98.75% sensitivity, 99.54% specificity, 98.65% precision, and 98.70% F1-score performance values. The results indicate that our AI system has the potential to provide valuable diagnostic assistance in clinical settings. |
first_indexed | 2024-03-07T19:15:14Z |
format | Article |
id | doaj.art-6868bd7de81642edbc8146e9e089c899 |
institution | Directory Open Access Journal |
issn | 2376-5992 |
language | English |
last_indexed | 2024-03-07T19:15:14Z |
publishDate | 2024-02-01 |
publisher | PeerJ Inc. |
record_format | Article |
series | PeerJ Computer Science |
spelling | doaj.art-6868bd7de81642edbc8146e9e089c8992024-02-29T15:05:09ZengPeerJ Inc.PeerJ Computer Science2376-59922024-02-0110e186210.7717/peerj-cs.1862A novel approach to recognition of Alzheimer’s and Parkinson’s diseases: random subspace ensemble classifier based on deep hybrid features with a super-resolution imageAdi Alhudhaif0Department of Computer Science, College of Computer Engineering and Sciences in Al-kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi ArabiaBackground Artificial intelligence technologies have great potential in classifying neurodegenerative diseases such as Alzheimer’s and Parkinson’s. These technologies can aid in early diagnosis, enhance classification accuracy, and improve patient access to appropriate treatments. For this purpose, we focused on AI-based auto-diagnosis of Alzheimer’s disease, Parkinson’s disease, and healthy MRI images. Methods In the current study, a deep hybrid network based on an ensemble classifier and convolutional neural network was designed. First, a very deep super-resolution neural network was adapted to improve the resolution of MRI images. Low and high-level features were extracted from the images processed with the hybrid deep convolutional neural network. Finally, these deep features are given as input to the k-nearest neighbor (KNN)-based random subspace ensemble classifier. Results A 3-class dataset containing publicly available MRI images was utilized to test the proposed architecture. In experimental works, the proposed model produced 99.11% accuracy, 98.75% sensitivity, 99.54% specificity, 98.65% precision, and 98.70% F1-score performance values. The results indicate that our AI system has the potential to provide valuable diagnostic assistance in clinical settings.https://peerj.com/articles/cs-1862.pdfAlzheimer’s detectionParkinson detectionDeep convolutional neural networksEnsemble classifier |
spellingShingle | Adi Alhudhaif A novel approach to recognition of Alzheimer’s and Parkinson’s diseases: random subspace ensemble classifier based on deep hybrid features with a super-resolution image PeerJ Computer Science Alzheimer’s detection Parkinson detection Deep convolutional neural networks Ensemble classifier |
title | A novel approach to recognition of Alzheimer’s and Parkinson’s diseases: random subspace ensemble classifier based on deep hybrid features with a super-resolution image |
title_full | A novel approach to recognition of Alzheimer’s and Parkinson’s diseases: random subspace ensemble classifier based on deep hybrid features with a super-resolution image |
title_fullStr | A novel approach to recognition of Alzheimer’s and Parkinson’s diseases: random subspace ensemble classifier based on deep hybrid features with a super-resolution image |
title_full_unstemmed | A novel approach to recognition of Alzheimer’s and Parkinson’s diseases: random subspace ensemble classifier based on deep hybrid features with a super-resolution image |
title_short | A novel approach to recognition of Alzheimer’s and Parkinson’s diseases: random subspace ensemble classifier based on deep hybrid features with a super-resolution image |
title_sort | novel approach to recognition of alzheimer s and parkinson s diseases random subspace ensemble classifier based on deep hybrid features with a super resolution image |
topic | Alzheimer’s detection Parkinson detection Deep convolutional neural networks Ensemble classifier |
url | https://peerj.com/articles/cs-1862.pdf |
work_keys_str_mv | AT adialhudhaif anovelapproachtorecognitionofalzheimersandparkinsonsdiseasesrandomsubspaceensembleclassifierbasedondeephybridfeatureswithasuperresolutionimage AT adialhudhaif novelapproachtorecognitionofalzheimersandparkinsonsdiseasesrandomsubspaceensembleclassifierbasedondeephybridfeatureswithasuperresolutionimage |