Wave-Filtered Surf Zone Circulation under High-Energy Waves Derived from Video-Based Optical Systems

This paper examines the potential of an optical flow video-based technique to estimate wave-filtered surface currents in the nearshore where wave-breaking induced foam is present. This approach uses the drifting foam, left after the passage of breaking waves, as a quasi-passive tracer and tracks it...

Full description

Bibliographic Details
Main Authors: Isaac Rodríguez-Padilla, Bruno Castelle, Vincent Marieu, Philippe Bonneton, Arthur Mouragues, Kevin Martins, Denis Morichon
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/10/1874
_version_ 1797534520069586944
author Isaac Rodríguez-Padilla
Bruno Castelle
Vincent Marieu
Philippe Bonneton
Arthur Mouragues
Kevin Martins
Denis Morichon
author_facet Isaac Rodríguez-Padilla
Bruno Castelle
Vincent Marieu
Philippe Bonneton
Arthur Mouragues
Kevin Martins
Denis Morichon
author_sort Isaac Rodríguez-Padilla
collection DOAJ
description This paper examines the potential of an optical flow video-based technique to estimate wave-filtered surface currents in the nearshore where wave-breaking induced foam is present. This approach uses the drifting foam, left after the passage of breaking waves, as a quasi-passive tracer and tracks it to estimate the surface water flow. The optical signature associated with sea-swell waves is first removed from the image sequence to avoid capturing propagating waves instead of the desired foam motion. Waves are removed by applying a temporal Fourier low-pass filter to each pixel of the image. The low-pass filtered images are then fed into an optical flow algorithm to estimate the foam displacement and to produce mean velocity fields (i.e., wave-filtered surface currents). We use one week of consecutive 1-Hz sampled frames collected during daylight hours from a single fixed camera located at La Petite Chambre d’Amour beach (Anglet, SW France) under high-energy conditions with significant wave height ranging from 0.8 to 3.3 m. Optical flow-computed velocities are compared against time-averaged in situ measurements retrieved from one current profiler installed on a submerged reef. The computed circulation patterns are also compared against surf-zone drifter trajectories under different field conditions. Optical flow time-averaged velocities show a good agreement with current profiler measurements: coefficient of determination <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>r</mi><mn>2</mn></msup><mo>)</mo><mo>=</mo></mrow></semantics></math></inline-formula> 0.5–0.8; root mean square error <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>RMSE</mi><mo>)</mo></mrow></semantics></math></inline-formula> = 0.12–0.24 m/s; mean error (bias) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mo>−</mo><mn>0.09</mn></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>0.17</mn></mrow></semantics></math></inline-formula> m/s; regression slope <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mn>1</mn><mo>±</mo><mn>0.15</mn></mrow></semantics></math></inline-formula>; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>coherence</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.4–0.6. Despite an underestimation of offshore-directed velocities under persistent wave breaking across the reef, the optical flow was able to correctly reproduce the mean flow patterns depicted by drifter trajectories. Such patterns include rip-cell circulation, dominant onshore-directed surface flow and energetic longshore current. Our study suggests that open-source optical flow algorithms are a promising technique for coastal imaging applications, particularly under high-energy wave conditions when in situ instrument deployment can be challenging.
first_indexed 2024-03-10T11:31:42Z
format Article
id doaj.art-6873e13a10574ea998be06627553991b
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-10T11:31:42Z
publishDate 2021-05-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-6873e13a10574ea998be06627553991b2023-11-21T19:13:06ZengMDPI AGRemote Sensing2072-42922021-05-011310187410.3390/rs13101874Wave-Filtered Surf Zone Circulation under High-Energy Waves Derived from Video-Based Optical SystemsIsaac Rodríguez-Padilla0Bruno Castelle1Vincent Marieu2Philippe Bonneton3Arthur Mouragues4Kevin Martins5Denis Morichon6CNRS, UMR 5805 EPOC, Université de Bordeaux, 33615 Pessac, FranceCNRS, UMR 5805 EPOC, Université de Bordeaux, 33615 Pessac, FranceCNRS, UMR 5805 EPOC, Université de Bordeaux, 33615 Pessac, FranceCNRS, UMR 5805 EPOC, Université de Bordeaux, 33615 Pessac, FranceCNRS, UMR 5805 EPOC, Université de Bordeaux, 33615 Pessac, FranceCNRS, UMR 5805 EPOC, Université de Bordeaux, 33615 Pessac, FranceSIAME-E2S, Université de Pau et des Pays de l’Adour, 64600 Anglet, FranceThis paper examines the potential of an optical flow video-based technique to estimate wave-filtered surface currents in the nearshore where wave-breaking induced foam is present. This approach uses the drifting foam, left after the passage of breaking waves, as a quasi-passive tracer and tracks it to estimate the surface water flow. The optical signature associated with sea-swell waves is first removed from the image sequence to avoid capturing propagating waves instead of the desired foam motion. Waves are removed by applying a temporal Fourier low-pass filter to each pixel of the image. The low-pass filtered images are then fed into an optical flow algorithm to estimate the foam displacement and to produce mean velocity fields (i.e., wave-filtered surface currents). We use one week of consecutive 1-Hz sampled frames collected during daylight hours from a single fixed camera located at La Petite Chambre d’Amour beach (Anglet, SW France) under high-energy conditions with significant wave height ranging from 0.8 to 3.3 m. Optical flow-computed velocities are compared against time-averaged in situ measurements retrieved from one current profiler installed on a submerged reef. The computed circulation patterns are also compared against surf-zone drifter trajectories under different field conditions. Optical flow time-averaged velocities show a good agreement with current profiler measurements: coefficient of determination <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>r</mi><mn>2</mn></msup><mo>)</mo><mo>=</mo></mrow></semantics></math></inline-formula> 0.5–0.8; root mean square error <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>RMSE</mi><mo>)</mo></mrow></semantics></math></inline-formula> = 0.12–0.24 m/s; mean error (bias) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mo>−</mo><mn>0.09</mn></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>0.17</mn></mrow></semantics></math></inline-formula> m/s; regression slope <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mn>1</mn><mo>±</mo><mn>0.15</mn></mrow></semantics></math></inline-formula>; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>coherence</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.4–0.6. Despite an underestimation of offshore-directed velocities under persistent wave breaking across the reef, the optical flow was able to correctly reproduce the mean flow patterns depicted by drifter trajectories. Such patterns include rip-cell circulation, dominant onshore-directed surface flow and energetic longshore current. Our study suggests that open-source optical flow algorithms are a promising technique for coastal imaging applications, particularly under high-energy wave conditions when in situ instrument deployment can be challenging.https://www.mdpi.com/2072-4292/13/10/1874optical flowvideo imagerysurf zonesurface currentsrip currents
spellingShingle Isaac Rodríguez-Padilla
Bruno Castelle
Vincent Marieu
Philippe Bonneton
Arthur Mouragues
Kevin Martins
Denis Morichon
Wave-Filtered Surf Zone Circulation under High-Energy Waves Derived from Video-Based Optical Systems
Remote Sensing
optical flow
video imagery
surf zone
surface currents
rip currents
title Wave-Filtered Surf Zone Circulation under High-Energy Waves Derived from Video-Based Optical Systems
title_full Wave-Filtered Surf Zone Circulation under High-Energy Waves Derived from Video-Based Optical Systems
title_fullStr Wave-Filtered Surf Zone Circulation under High-Energy Waves Derived from Video-Based Optical Systems
title_full_unstemmed Wave-Filtered Surf Zone Circulation under High-Energy Waves Derived from Video-Based Optical Systems
title_short Wave-Filtered Surf Zone Circulation under High-Energy Waves Derived from Video-Based Optical Systems
title_sort wave filtered surf zone circulation under high energy waves derived from video based optical systems
topic optical flow
video imagery
surf zone
surface currents
rip currents
url https://www.mdpi.com/2072-4292/13/10/1874
work_keys_str_mv AT isaacrodriguezpadilla wavefilteredsurfzonecirculationunderhighenergywavesderivedfromvideobasedopticalsystems
AT brunocastelle wavefilteredsurfzonecirculationunderhighenergywavesderivedfromvideobasedopticalsystems
AT vincentmarieu wavefilteredsurfzonecirculationunderhighenergywavesderivedfromvideobasedopticalsystems
AT philippebonneton wavefilteredsurfzonecirculationunderhighenergywavesderivedfromvideobasedopticalsystems
AT arthurmouragues wavefilteredsurfzonecirculationunderhighenergywavesderivedfromvideobasedopticalsystems
AT kevinmartins wavefilteredsurfzonecirculationunderhighenergywavesderivedfromvideobasedopticalsystems
AT denismorichon wavefilteredsurfzonecirculationunderhighenergywavesderivedfromvideobasedopticalsystems