Changes in malaria vector bionomics and transmission patterns in the equatorial forest region of Cameroon between 2000 and 2017

Abstract Background Increased use of long-lasting insecticidal nets (LLINs) over the last decade has considerably improved the control of malaria in sub-Saharan Africa. However, there is still a paucity of data on the influence of LLIN use and other factors on mosquito bionomics in different epidemi...

Full description

Bibliographic Details
Main Authors: Roland Bamou, Lili Ranaise Mbakop, Edmond Kopya, Cyrille Ndo, Parfait Awono-Ambene, Timoleon Tchuinkam, Martin Kibet Rono, Joseph Mwangangi, Christophe Antonio-Nkondjio
Format: Article
Language:English
Published: BMC 2018-08-01
Series:Parasites & Vectors
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13071-018-3049-4
Description
Summary:Abstract Background Increased use of long-lasting insecticidal nets (LLINs) over the last decade has considerably improved the control of malaria in sub-Saharan Africa. However, there is still a paucity of data on the influence of LLIN use and other factors on mosquito bionomics in different epidemiological foci. The objective of this study was to provide updated data on the evolution of vector bionomics and malaria transmission patterns in the equatorial forest region of Cameroon over the period 2000–2017, during which LLIN coverage has increased substantially. Methods The study was conducted in Olama and Nyabessan, two villages situated in the equatorial forest region. Mosquito collections from 2016–2017 were compared to those of 2000–2001. Mosquitoes were sampled using both human landing catches and indoor sprays, and were identified using morphological taxonomic keys. Specimens belonging to the An. gambiae complex were further identified using molecular tools. Insecticide resistance bioassays were undertaken on An. gambiae to assess the susceptibility levels to both permethrin and deltamethrin. Mosquitoes were screened for Plasmodium falciparum infection and blood-feeding preference using the ELISA technique. Parasitological surveys in the population were conducted to determine the prevalence of Plasmodium infection using rapid diagnostic tests. Results A change in the species composition of sampled mosquitoes was recorded between the 2000–2001 collections and those of 2016–2017. A drop in the density of the local primary vectors An. nili and An. moucheti in the forest region was recorded, whereas there was an increase in the density of An. gambiae (s.l.), An. marshallii, An. ziemannii and An. paludis. A change in the biting behaviour from indoor to outdoor was recorded in Olama. Very few indoor resting mosquitoes were collected. A change in the night biting cycle was recorded with mosquitoes displaying a shift from night biting to late evening/early in the night. Several mosquitoes were found positive for Plasmodium infection, thus sustaining continuous transmission of malaria in both sites. Reduction of malaria transmission in Nyabessan was lower than that seen in Olama and associated with deforestation and the construction of a dam that may have enabled a more efficient vector, An. gambiae (s.l.), to invade the area. A high level of resistance to pyrethroids (permethrin and deltamethrin) was detected for An. gambiae in both sites. High parasite prevalence was recorded in both sites, with children of 0–16 years being the most affected. In both Olama and Nyabessan, bed net usage appeared to correlate to protection against malaria infection. Conclusions The study shows important changes in the bionomics of vector populations and malaria transmission patterns in the equatorial forest region. The changes call for more concerted efforts to address challenges such as insecticide resistance, environmental modifications or behavioural changes affecting the performance of current control measures.
ISSN:1756-3305