Summary: | Active colloids and externally actuated semi-flexible filaments provide basic building blocks for designing autonomously motile micro-machines. Here, we show that a passive semi-flexible filament can be actuated and transported by attaching an active colloid to its terminus. We study the dynamics of this assembly when it is free, tethered, or clamped using overdamped equations of motion that explicitly account for active fluid flow and the forces it mediates. Linear states are destabilised by buckling instabilities to produce stable states of non-zero curvature and writhe. We demarcate boundaries of these states in the two-dimensional parameter space representing dimensionless measures of polar and apolar activity. Our proposed assembly can be used as a novel component in the design of micro-machines at low Reynolds number and to study elastic instabilities driven by ‘follower’ forces.
|