On Soft Generalized <i>ω</i>-Closed Sets and Soft <i>T</i><sub>1/2</sub> Spaces in Soft Topological Spaces

In this paper, we define a soft generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed set, which is a generalization of both th...

Full description

Bibliographic Details
Main Author: Samer Al Ghour
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/5/194
_version_ 1797501576284209152
author Samer Al Ghour
author_facet Samer Al Ghour
author_sort Samer Al Ghour
collection DOAJ
description In this paper, we define a soft generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed set, which is a generalization of both the soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed set and the soft generalized closed set. We show that the classes of generalized closed sets and generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed sets coincide in soft anti-locally countable soft topological spaces. Additionally, in soft locally countable soft topological spaces, we show that every soft set is a soft generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed set. Furthermore, we prove that the classes of soft generalized closed sets and soft generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed sets coincide in the soft topological space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><msub><mi>τ</mi><mi>ω</mi></msub><mo>,</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula>. In addition to these, we determine the behavior of soft generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed sets relative to soft unions, soft intersections, soft subspaces, and generated soft topologies. Furthermore, we investigate soft images and soft inverse images of soft generalized closed sets and soft generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed sets under soft continuous, soft closed soft transformations. Finally, we continue the study of soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></semantics></math></inline-formula> spaces, in which we obtain two characterizations of these soft spaces, and investigate their behavior with respect to soft subspaces, soft transformations, and generated soft topologies.
first_indexed 2024-03-10T03:20:26Z
format Article
id doaj.art-687ee9883c2c4592841d835067f6bd29
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-10T03:20:26Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-687ee9883c2c4592841d835067f6bd292023-11-23T10:03:54ZengMDPI AGAxioms2075-16802022-04-0111519410.3390/axioms11050194On Soft Generalized <i>ω</i>-Closed Sets and Soft <i>T</i><sub>1/2</sub> Spaces in Soft Topological SpacesSamer Al Ghour0Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, JordanIn this paper, we define a soft generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed set, which is a generalization of both the soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed set and the soft generalized closed set. We show that the classes of generalized closed sets and generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed sets coincide in soft anti-locally countable soft topological spaces. Additionally, in soft locally countable soft topological spaces, we show that every soft set is a soft generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed set. Furthermore, we prove that the classes of soft generalized closed sets and soft generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed sets coincide in the soft topological space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><msub><mi>τ</mi><mi>ω</mi></msub><mo>,</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula>. In addition to these, we determine the behavior of soft generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed sets relative to soft unions, soft intersections, soft subspaces, and generated soft topologies. Furthermore, we investigate soft images and soft inverse images of soft generalized closed sets and soft generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed sets under soft continuous, soft closed soft transformations. Finally, we continue the study of soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></semantics></math></inline-formula> spaces, in which we obtain two characterizations of these soft spaces, and investigate their behavior with respect to soft subspaces, soft transformations, and generated soft topologies.https://www.mdpi.com/2075-1680/11/5/194soft ω-open setgeneralized closed sets<i>T</i><sub>1/2</sub> spacesgeneralized ω-closed setssoft <i>T</i><sub>1/2</sub> spacessoft generated soft topological spaces
spellingShingle Samer Al Ghour
On Soft Generalized <i>ω</i>-Closed Sets and Soft <i>T</i><sub>1/2</sub> Spaces in Soft Topological Spaces
Axioms
soft ω-open set
generalized closed sets
<i>T</i><sub>1/2</sub> spaces
generalized ω-closed sets
soft <i>T</i><sub>1/2</sub> spaces
soft generated soft topological spaces
title On Soft Generalized <i>ω</i>-Closed Sets and Soft <i>T</i><sub>1/2</sub> Spaces in Soft Topological Spaces
title_full On Soft Generalized <i>ω</i>-Closed Sets and Soft <i>T</i><sub>1/2</sub> Spaces in Soft Topological Spaces
title_fullStr On Soft Generalized <i>ω</i>-Closed Sets and Soft <i>T</i><sub>1/2</sub> Spaces in Soft Topological Spaces
title_full_unstemmed On Soft Generalized <i>ω</i>-Closed Sets and Soft <i>T</i><sub>1/2</sub> Spaces in Soft Topological Spaces
title_short On Soft Generalized <i>ω</i>-Closed Sets and Soft <i>T</i><sub>1/2</sub> Spaces in Soft Topological Spaces
title_sort on soft generalized i ω i closed sets and soft i t i sub 1 2 sub spaces in soft topological spaces
topic soft ω-open set
generalized closed sets
<i>T</i><sub>1/2</sub> spaces
generalized ω-closed sets
soft <i>T</i><sub>1/2</sub> spaces
soft generated soft topological spaces
url https://www.mdpi.com/2075-1680/11/5/194
work_keys_str_mv AT sameralghour onsoftgeneralizediōiclosedsetsandsoftitisub12subspacesinsofttopologicalspaces