Diffusion Chaos in Reaction – Diffusion Boundary Problem in the Dumbbell Domain

<p>We consider a boundary problem of reaction-diffusion type in the domain consisting of two rectangular areas connected by a bridge. The bridge width is a bifurcation parameter of the problem and is changed in such way that the measure of the domain is preserved. The conditions on chaotic osc...

Full description

Bibliographic Details
Main Authors: S. D. Glyzin, P. L. Shokin
Format: Article
Language:English
Published: Yaroslavl State University 2013-01-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:http://mais-journal.ru/jour/article/view/194
_version_ 1797966967568596992
author S. D. Glyzin
P. L. Shokin
author_facet S. D. Glyzin
P. L. Shokin
author_sort S. D. Glyzin
collection DOAJ
description <p>We consider a boundary problem of reaction-diffusion type in the domain consisting of two rectangular areas connected by a bridge. The bridge width is a bifurcation parameter of the problem and is changed in such way that the measure of the domain is preserved. The conditions on chaotic oscillations emergence were studied and the dependence of invariant characteristics of the attractor on the bridge width was constructed. The diffusion parameter was chosen such that in the case of widest possible bridge (corresponding to a rectangular domain) the spatially homogeneous cycle of the problem is orbitally asymptotically stable. By decreasing the bridge width the homogeneous cycle looses stability and then the spatially inhomogeneous chaotic attractor emerges. For the obtained attractor we compute Lyapunov exponents and Lyapunov dimension and notice that the dimension grows as the parameter decreases but is bounded. We show that the dimension growth is connected with the growing complexity of stable solutions distribution with respect to the space variable.</p>
first_indexed 2024-04-11T02:23:43Z
format Article
id doaj.art-68882854058e4f239b423e3cd9a217c0
institution Directory Open Access Journal
issn 1818-1015
2313-5417
language English
last_indexed 2024-04-11T02:23:43Z
publishDate 2013-01-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj.art-68882854058e4f239b423e3cd9a217c02023-01-02T23:04:49ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172013-01-012034357188Diffusion Chaos in Reaction – Diffusion Boundary Problem in the Dumbbell DomainS. D. Glyzin0P. L. Shokin1Ярославский государственный университет им. П.Г. ДемидоваЯрославский государственный университет им. П.Г. Демидова<p>We consider a boundary problem of reaction-diffusion type in the domain consisting of two rectangular areas connected by a bridge. The bridge width is a bifurcation parameter of the problem and is changed in such way that the measure of the domain is preserved. The conditions on chaotic oscillations emergence were studied and the dependence of invariant characteristics of the attractor on the bridge width was constructed. The diffusion parameter was chosen such that in the case of widest possible bridge (corresponding to a rectangular domain) the spatially homogeneous cycle of the problem is orbitally asymptotically stable. By decreasing the bridge width the homogeneous cycle looses stability and then the spatially inhomogeneous chaotic attractor emerges. For the obtained attractor we compute Lyapunov exponents and Lyapunov dimension and notice that the dimension grows as the parameter decreases but is bounded. We show that the dimension growth is connected with the growing complexity of stable solutions distribution with respect to the space variable.</p>http://mais-journal.ru/jour/article/view/194диффузионный хаосаттракторляпуновская размерностьуравнение Гинзбурга – Ландаубифуркация
spellingShingle S. D. Glyzin
P. L. Shokin
Diffusion Chaos in Reaction – Diffusion Boundary Problem in the Dumbbell Domain
Моделирование и анализ информационных систем
диффузионный хаос
аттрактор
ляпуновская размерность
уравнение Гинзбурга – Ландау
бифуркация
title Diffusion Chaos in Reaction – Diffusion Boundary Problem in the Dumbbell Domain
title_full Diffusion Chaos in Reaction – Diffusion Boundary Problem in the Dumbbell Domain
title_fullStr Diffusion Chaos in Reaction – Diffusion Boundary Problem in the Dumbbell Domain
title_full_unstemmed Diffusion Chaos in Reaction – Diffusion Boundary Problem in the Dumbbell Domain
title_short Diffusion Chaos in Reaction – Diffusion Boundary Problem in the Dumbbell Domain
title_sort diffusion chaos in reaction diffusion boundary problem in the dumbbell domain
topic диффузионный хаос
аттрактор
ляпуновская размерность
уравнение Гинзбурга – Ландау
бифуркация
url http://mais-journal.ru/jour/article/view/194
work_keys_str_mv AT sdglyzin diffusionchaosinreactiondiffusionboundaryprobleminthedumbbelldomain
AT plshokin diffusionchaosinreactiondiffusionboundaryprobleminthedumbbelldomain