Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations

The major volcanic eruption of Mount Pinatubo in 1991 has been shown to have significant effects on stratospheric chemistry and ozone depletion even at midlatitudes. Since then, only <q>moderate</q> but recurrent volcanic eruptions have modulated the stratospheric aerosol loading and are...

Full description

Bibliographic Details
Main Authors: G. Berthet, F. Jégou, V. Catoire, G. Krysztofiak, J.-B. Renard, A. E. Bourassa, D. A. Degenstein, C. Brogniez, M. Dorf, S. Kreycy, K. Pfeilsticker, B. Werner, F. Lefèvre, T. J. Roberts, T. Lurton, D. Vignelles, N. Bègue, Q. Bourgeois, D. Daugeron, M. Chartier, C. Robert, B. Gaubicher, C. Guimbaud
Format: Article
Language:English
Published: Copernicus Publications 2017-02-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/17/2229/2017/acp-17-2229-2017.pdf
_version_ 1819289624834473984
author G. Berthet
F. Jégou
V. Catoire
G. Krysztofiak
J.-B. Renard
A. E. Bourassa
D. A. Degenstein
C. Brogniez
M. Dorf
S. Kreycy
K. Pfeilsticker
B. Werner
F. Lefèvre
T. J. Roberts
T. Lurton
D. Vignelles
N. Bègue
Q. Bourgeois
D. Daugeron
M. Chartier
C. Robert
B. Gaubicher
C. Guimbaud
author_facet G. Berthet
F. Jégou
V. Catoire
G. Krysztofiak
J.-B. Renard
A. E. Bourassa
D. A. Degenstein
C. Brogniez
M. Dorf
S. Kreycy
K. Pfeilsticker
B. Werner
F. Lefèvre
T. J. Roberts
T. Lurton
D. Vignelles
N. Bègue
Q. Bourgeois
D. Daugeron
M. Chartier
C. Robert
B. Gaubicher
C. Guimbaud
author_sort G. Berthet
collection DOAJ
description The major volcanic eruption of Mount Pinatubo in 1991 has been shown to have significant effects on stratospheric chemistry and ozone depletion even at midlatitudes. Since then, only <q>moderate</q> but recurrent volcanic eruptions have modulated the stratospheric aerosol loading and are assumed to be one cause for the reported increase in the global aerosol content over the past 15 years. This particularly enhanced aerosol context raises questions about the effects on stratospheric chemistry which depend on the latitude, altitude and season of injection. In this study, we focus on the midlatitude Sarychev volcano eruption in June 2009, which injected 0.9 Tg of sulfur dioxide (about 20 times less than Pinatubo) into a lower stratosphere mainly governed by high-stratospheric temperatures. Together with in situ measurements of aerosol amounts, we analyse high-resolution in situ and/or remote-sensing observations of NO<sub>2</sub>, HNO<sub>3</sub> and BrO from balloon-borne infrared and UV–visible spectrometers launched in Sweden in August–September 2009. It is shown that differences between observations and three-dimensional (3-D) chemistry-transport model (CTM) outputs are not due to transport calculation issues but rather reflect the chemical impact of the volcanic plume below 19 km altitude. Good measurement–model agreement is obtained when the CTM is driven by volcanic aerosol loadings derived from in situ or space-borne data. As a result of enhanced N<sub>2</sub>O<sub>5</sub> hydrolysis in the Sarychev volcanic aerosol conditions, the model calculates reductions of ∼ 45 % and increases of ∼ 11 % in NO<sub>2</sub> and HNO<sub>3</sub> amounts respectively over the August–September 2009 period. The decrease in NO<sub><i>x</i></sub> abundances is limited due to the expected saturation effect for high aerosol loadings. The links between the various chemical catalytic cycles involving chlorine, bromine, nitrogen and HO<sub><i>x</i></sub> compounds in the lower stratosphere are discussed. The increased BrO amounts (∼ 22 %) compare rather well with the balloon-borne observations when volcanic aerosol levels are accounted for in the CTM and appear to be mainly controlled by the coupling with nitrogen chemistry rather than by enhanced BrONO<sub>2</sub> hydrolysis. We show that the chlorine partitioning is significantly controlled by enhanced BrONO<sub>2</sub> hydrolysis. However, simulated effects of the Sarychev eruption on chlorine activation are very limited in the high-temperature conditions in the stratosphere in the period considered, inhibiting the effect of ClONO<sub>2</sub> hydrolysis. As a consequence, the simulated chemical ozone loss due to the Sarychev aerosols is low with a reduction of −22 ppbv (−1.5 %) of the ozone budget around 16 km. This is at least 10 times lower than the maximum ozone depletion from chemical processes (up to −20 %) reported in the Northern Hemisphere lower stratosphere over the first year following the Pinatubo eruption. This study suggests that moderate volcanic eruptions have limited chemical effects when occurring at midlatitudes (restricted residence times) and outside winter periods (high-temperature conditions). However, it would be of interest to investigate longer-lasting tropical volcanic plumes or sulfur injections in the wintertime low-temperature conditions.
first_indexed 2024-12-24T03:09:49Z
format Article
id doaj.art-68986490c76c4b9f97cb9e79092325f1
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-24T03:09:49Z
publishDate 2017-02-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-68986490c76c4b9f97cb9e79092325f12022-12-21T17:17:52ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242017-02-011732229225310.5194/acp-17-2229-2017Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculationsG. Berthet0F. Jégou1V. Catoire2G. Krysztofiak3J.-B. Renard4A. E. Bourassa5D. A. Degenstein6C. Brogniez7M. Dorf8S. Kreycy9K. Pfeilsticker10B. Werner11F. Lefèvre12T. J. Roberts13T. Lurton14D. Vignelles15N. Bègue16Q. Bourgeois17D. Daugeron18M. Chartier19C. Robert20B. Gaubicher21C. Guimbaud22Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceInstitute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, CanadaInstitute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, CanadaLaboratoire d'Optique Atmosphérique, Université Lille 1 Sciences et Technologies, CNRS UMR8518, Villeneuve d'Ascq, FranceInstitute of Environmental Physics, University of Heidelberg, Heidelberg, GermanyInstitute of Environmental Physics, University of Heidelberg, Heidelberg, GermanyInstitute of Environmental Physics, University of Heidelberg, Heidelberg, GermanyInstitute of Environmental Physics, University of Heidelberg, Heidelberg, GermanyLaboratoire Atmosphères Milieux Observations Spatiales, UPMC, Université Paris 06, Université Versailles Saint Quentin, CNRS UMR8190, LATMOS-IPSL, Paris, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de l'Atmosphère et des Cyclones, UMR8105 CNRS, Université de la Réunion, Saint-Denis de la Réunion, FranceDepartment of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, SwedenLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceThe major volcanic eruption of Mount Pinatubo in 1991 has been shown to have significant effects on stratospheric chemistry and ozone depletion even at midlatitudes. Since then, only <q>moderate</q> but recurrent volcanic eruptions have modulated the stratospheric aerosol loading and are assumed to be one cause for the reported increase in the global aerosol content over the past 15 years. This particularly enhanced aerosol context raises questions about the effects on stratospheric chemistry which depend on the latitude, altitude and season of injection. In this study, we focus on the midlatitude Sarychev volcano eruption in June 2009, which injected 0.9 Tg of sulfur dioxide (about 20 times less than Pinatubo) into a lower stratosphere mainly governed by high-stratospheric temperatures. Together with in situ measurements of aerosol amounts, we analyse high-resolution in situ and/or remote-sensing observations of NO<sub>2</sub>, HNO<sub>3</sub> and BrO from balloon-borne infrared and UV–visible spectrometers launched in Sweden in August–September 2009. It is shown that differences between observations and three-dimensional (3-D) chemistry-transport model (CTM) outputs are not due to transport calculation issues but rather reflect the chemical impact of the volcanic plume below 19 km altitude. Good measurement–model agreement is obtained when the CTM is driven by volcanic aerosol loadings derived from in situ or space-borne data. As a result of enhanced N<sub>2</sub>O<sub>5</sub> hydrolysis in the Sarychev volcanic aerosol conditions, the model calculates reductions of ∼ 45 % and increases of ∼ 11 % in NO<sub>2</sub> and HNO<sub>3</sub> amounts respectively over the August–September 2009 period. The decrease in NO<sub><i>x</i></sub> abundances is limited due to the expected saturation effect for high aerosol loadings. The links between the various chemical catalytic cycles involving chlorine, bromine, nitrogen and HO<sub><i>x</i></sub> compounds in the lower stratosphere are discussed. The increased BrO amounts (∼ 22 %) compare rather well with the balloon-borne observations when volcanic aerosol levels are accounted for in the CTM and appear to be mainly controlled by the coupling with nitrogen chemistry rather than by enhanced BrONO<sub>2</sub> hydrolysis. We show that the chlorine partitioning is significantly controlled by enhanced BrONO<sub>2</sub> hydrolysis. However, simulated effects of the Sarychev eruption on chlorine activation are very limited in the high-temperature conditions in the stratosphere in the period considered, inhibiting the effect of ClONO<sub>2</sub> hydrolysis. As a consequence, the simulated chemical ozone loss due to the Sarychev aerosols is low with a reduction of −22 ppbv (−1.5 %) of the ozone budget around 16 km. This is at least 10 times lower than the maximum ozone depletion from chemical processes (up to −20 %) reported in the Northern Hemisphere lower stratosphere over the first year following the Pinatubo eruption. This study suggests that moderate volcanic eruptions have limited chemical effects when occurring at midlatitudes (restricted residence times) and outside winter periods (high-temperature conditions). However, it would be of interest to investigate longer-lasting tropical volcanic plumes or sulfur injections in the wintertime low-temperature conditions.http://www.atmos-chem-phys.net/17/2229/2017/acp-17-2229-2017.pdf
spellingShingle G. Berthet
F. Jégou
V. Catoire
G. Krysztofiak
J.-B. Renard
A. E. Bourassa
D. A. Degenstein
C. Brogniez
M. Dorf
S. Kreycy
K. Pfeilsticker
B. Werner
F. Lefèvre
T. J. Roberts
T. Lurton
D. Vignelles
N. Bègue
Q. Bourgeois
D. Daugeron
M. Chartier
C. Robert
B. Gaubicher
C. Guimbaud
Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations
Atmospheric Chemistry and Physics
title Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations
title_full Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations
title_fullStr Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations
title_full_unstemmed Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations
title_short Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations
title_sort impact of a moderate volcanic eruption on chemistry in the lower stratosphere balloon borne observations and model calculations
url http://www.atmos-chem-phys.net/17/2229/2017/acp-17-2229-2017.pdf
work_keys_str_mv AT gberthet impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT fjegou impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT vcatoire impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT gkrysztofiak impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT jbrenard impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT aebourassa impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT dadegenstein impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT cbrogniez impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT mdorf impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT skreycy impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT kpfeilsticker impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT bwerner impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT flefevre impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT tjroberts impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT tlurton impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT dvignelles impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT nbegue impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT qbourgeois impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT ddaugeron impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT mchartier impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT crobert impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT bgaubicher impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations
AT cguimbaud impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations