Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations
The major volcanic eruption of Mount Pinatubo in 1991 has been shown to have significant effects on stratospheric chemistry and ozone depletion even at midlatitudes. Since then, only <q>moderate</q> but recurrent volcanic eruptions have modulated the stratospheric aerosol loading and are...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2017-02-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/17/2229/2017/acp-17-2229-2017.pdf |
_version_ | 1819289624834473984 |
---|---|
author | G. Berthet F. Jégou V. Catoire G. Krysztofiak J.-B. Renard A. E. Bourassa D. A. Degenstein C. Brogniez M. Dorf S. Kreycy K. Pfeilsticker B. Werner F. Lefèvre T. J. Roberts T. Lurton D. Vignelles N. Bègue Q. Bourgeois D. Daugeron M. Chartier C. Robert B. Gaubicher C. Guimbaud |
author_facet | G. Berthet F. Jégou V. Catoire G. Krysztofiak J.-B. Renard A. E. Bourassa D. A. Degenstein C. Brogniez M. Dorf S. Kreycy K. Pfeilsticker B. Werner F. Lefèvre T. J. Roberts T. Lurton D. Vignelles N. Bègue Q. Bourgeois D. Daugeron M. Chartier C. Robert B. Gaubicher C. Guimbaud |
author_sort | G. Berthet |
collection | DOAJ |
description | The major volcanic eruption of Mount Pinatubo in 1991 has been shown to have
significant effects on stratospheric chemistry and ozone depletion even at
midlatitudes. Since then, only <q>moderate</q> but recurrent volcanic eruptions
have modulated the stratospheric aerosol loading and are assumed to be one
cause for the reported increase in the global aerosol content over the past
15 years. This particularly enhanced aerosol context raises questions about the
effects on stratospheric chemistry which depend on the latitude, altitude and
season of injection. In this study, we focus on the midlatitude Sarychev
volcano eruption in June 2009, which injected 0.9 Tg of sulfur dioxide (about
20 times less than Pinatubo) into a lower stratosphere mainly governed by high-stratospheric temperatures. Together with in situ measurements of aerosol
amounts, we analyse high-resolution in situ and/or remote-sensing
observations of NO<sub>2</sub>, HNO<sub>3</sub> and BrO from balloon-borne infrared and
UV–visible spectrometers launched in Sweden in August–September 2009. It is
shown that differences between observations and three-dimensional (3-D)
chemistry-transport model (CTM) outputs are not due to transport calculation
issues but rather reflect the chemical impact of the volcanic plume below 19 km altitude. Good measurement–model agreement is obtained when the CTM is
driven by volcanic aerosol loadings derived from in situ or space-borne data.
As a result of enhanced N<sub>2</sub>O<sub>5</sub> hydrolysis in the Sarychev volcanic
aerosol conditions, the model calculates reductions of ∼ 45 %
and increases of ∼ 11 % in NO<sub>2</sub> and HNO<sub>3</sub> amounts
respectively over the August–September 2009 period. The decrease in NO<sub><i>x</i></sub>
abundances is limited due to the expected saturation effect for high
aerosol loadings. The links between the various chemical catalytic cycles
involving chlorine, bromine, nitrogen and HO<sub><i>x</i></sub> compounds in the lower
stratosphere are discussed. The increased BrO amounts (∼ 22 %)
compare rather well with the balloon-borne observations when volcanic
aerosol levels are accounted for in the CTM and appear to be mainly
controlled by the coupling with nitrogen chemistry rather than by enhanced
BrONO<sub>2</sub> hydrolysis. We show that the chlorine partitioning is
significantly controlled by enhanced BrONO<sub>2</sub> hydrolysis. However, simulated effects of the Sarychev eruption on chlorine activation are very
limited in the high-temperature conditions in the stratosphere in the period
considered, inhibiting the effect of ClONO<sub>2</sub> hydrolysis. As a
consequence, the simulated chemical ozone loss due to the Sarychev aerosols
is low with a reduction of −22 ppbv (−1.5 %) of the ozone budget around 16 km.
This is at least 10 times lower than the maximum ozone depletion from
chemical processes (up to −20 %) reported in the Northern Hemisphere lower
stratosphere over the first year following the Pinatubo eruption. This study
suggests that moderate volcanic eruptions have limited chemical effects when
occurring at midlatitudes (restricted residence times) and outside winter
periods (high-temperature conditions). However, it would be of interest to investigate longer-lasting
tropical volcanic plumes or sulfur injections in the wintertime low-temperature conditions. |
first_indexed | 2024-12-24T03:09:49Z |
format | Article |
id | doaj.art-68986490c76c4b9f97cb9e79092325f1 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-24T03:09:49Z |
publishDate | 2017-02-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-68986490c76c4b9f97cb9e79092325f12022-12-21T17:17:52ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242017-02-011732229225310.5194/acp-17-2229-2017Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculationsG. Berthet0F. Jégou1V. Catoire2G. Krysztofiak3J.-B. Renard4A. E. Bourassa5D. A. Degenstein6C. Brogniez7M. Dorf8S. Kreycy9K. Pfeilsticker10B. Werner11F. Lefèvre12T. J. Roberts13T. Lurton14D. Vignelles15N. Bègue16Q. Bourgeois17D. Daugeron18M. Chartier19C. Robert20B. Gaubicher21C. Guimbaud22Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceInstitute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, CanadaInstitute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, CanadaLaboratoire d'Optique Atmosphérique, Université Lille 1 Sciences et Technologies, CNRS UMR8518, Villeneuve d'Ascq, FranceInstitute of Environmental Physics, University of Heidelberg, Heidelberg, GermanyInstitute of Environmental Physics, University of Heidelberg, Heidelberg, GermanyInstitute of Environmental Physics, University of Heidelberg, Heidelberg, GermanyInstitute of Environmental Physics, University of Heidelberg, Heidelberg, GermanyLaboratoire Atmosphères Milieux Observations Spatiales, UPMC, Université Paris 06, Université Versailles Saint Quentin, CNRS UMR8190, LATMOS-IPSL, Paris, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de l'Atmosphère et des Cyclones, UMR8105 CNRS, Université de la Réunion, Saint-Denis de la Réunion, FranceDepartment of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, SwedenLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceLaboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, CNRS UMR7328, Orléans, FranceThe major volcanic eruption of Mount Pinatubo in 1991 has been shown to have significant effects on stratospheric chemistry and ozone depletion even at midlatitudes. Since then, only <q>moderate</q> but recurrent volcanic eruptions have modulated the stratospheric aerosol loading and are assumed to be one cause for the reported increase in the global aerosol content over the past 15 years. This particularly enhanced aerosol context raises questions about the effects on stratospheric chemistry which depend on the latitude, altitude and season of injection. In this study, we focus on the midlatitude Sarychev volcano eruption in June 2009, which injected 0.9 Tg of sulfur dioxide (about 20 times less than Pinatubo) into a lower stratosphere mainly governed by high-stratospheric temperatures. Together with in situ measurements of aerosol amounts, we analyse high-resolution in situ and/or remote-sensing observations of NO<sub>2</sub>, HNO<sub>3</sub> and BrO from balloon-borne infrared and UV–visible spectrometers launched in Sweden in August–September 2009. It is shown that differences between observations and three-dimensional (3-D) chemistry-transport model (CTM) outputs are not due to transport calculation issues but rather reflect the chemical impact of the volcanic plume below 19 km altitude. Good measurement–model agreement is obtained when the CTM is driven by volcanic aerosol loadings derived from in situ or space-borne data. As a result of enhanced N<sub>2</sub>O<sub>5</sub> hydrolysis in the Sarychev volcanic aerosol conditions, the model calculates reductions of ∼ 45 % and increases of ∼ 11 % in NO<sub>2</sub> and HNO<sub>3</sub> amounts respectively over the August–September 2009 period. The decrease in NO<sub><i>x</i></sub> abundances is limited due to the expected saturation effect for high aerosol loadings. The links between the various chemical catalytic cycles involving chlorine, bromine, nitrogen and HO<sub><i>x</i></sub> compounds in the lower stratosphere are discussed. The increased BrO amounts (∼ 22 %) compare rather well with the balloon-borne observations when volcanic aerosol levels are accounted for in the CTM and appear to be mainly controlled by the coupling with nitrogen chemistry rather than by enhanced BrONO<sub>2</sub> hydrolysis. We show that the chlorine partitioning is significantly controlled by enhanced BrONO<sub>2</sub> hydrolysis. However, simulated effects of the Sarychev eruption on chlorine activation are very limited in the high-temperature conditions in the stratosphere in the period considered, inhibiting the effect of ClONO<sub>2</sub> hydrolysis. As a consequence, the simulated chemical ozone loss due to the Sarychev aerosols is low with a reduction of −22 ppbv (−1.5 %) of the ozone budget around 16 km. This is at least 10 times lower than the maximum ozone depletion from chemical processes (up to −20 %) reported in the Northern Hemisphere lower stratosphere over the first year following the Pinatubo eruption. This study suggests that moderate volcanic eruptions have limited chemical effects when occurring at midlatitudes (restricted residence times) and outside winter periods (high-temperature conditions). However, it would be of interest to investigate longer-lasting tropical volcanic plumes or sulfur injections in the wintertime low-temperature conditions.http://www.atmos-chem-phys.net/17/2229/2017/acp-17-2229-2017.pdf |
spellingShingle | G. Berthet F. Jégou V. Catoire G. Krysztofiak J.-B. Renard A. E. Bourassa D. A. Degenstein C. Brogniez M. Dorf S. Kreycy K. Pfeilsticker B. Werner F. Lefèvre T. J. Roberts T. Lurton D. Vignelles N. Bègue Q. Bourgeois D. Daugeron M. Chartier C. Robert B. Gaubicher C. Guimbaud Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations Atmospheric Chemistry and Physics |
title | Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations |
title_full | Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations |
title_fullStr | Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations |
title_full_unstemmed | Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations |
title_short | Impact of a moderate volcanic eruption on chemistry in the lower stratosphere: balloon-borne observations and model calculations |
title_sort | impact of a moderate volcanic eruption on chemistry in the lower stratosphere balloon borne observations and model calculations |
url | http://www.atmos-chem-phys.net/17/2229/2017/acp-17-2229-2017.pdf |
work_keys_str_mv | AT gberthet impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT fjegou impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT vcatoire impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT gkrysztofiak impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT jbrenard impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT aebourassa impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT dadegenstein impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT cbrogniez impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT mdorf impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT skreycy impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT kpfeilsticker impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT bwerner impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT flefevre impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT tjroberts impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT tlurton impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT dvignelles impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT nbegue impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT qbourgeois impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT ddaugeron impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT mchartier impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT crobert impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT bgaubicher impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations AT cguimbaud impactofamoderatevolcaniceruptiononchemistryinthelowerstratosphereballoonborneobservationsandmodelcalculations |