One size does not fit all: navigating the multi-dimensional space to optimize T-cell engaging protein therapeutics

T-cell engaging biologics is a class of novel and promising immune-oncology compounds that leverage the immune system to eradicate cancer. Here, we compared and contrasted a bispecific diabody-Fc format, which displays a relatively short antigen-binding arm distance, with our bispecific IgG platform...

Full description

Bibliographic Details
Main Authors: Wei Chen, Fan Yang, Carole Wang, Jatin Narula, Edward Pascua, Irene Ni, Sheng Ding, Xiaodi Deng, Matthew Ling-Hon Chu, Amber Pham, Xiaoyue Jiang, Kevin C. Lindquist, Patrick J. Doonan, Tom Van Blarcom, Yik Andy Yeung, Javier Chaparro-Riggers
Format: Article
Language:English
Published: Taylor & Francis Group 2021-01-01
Series:mAbs
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/19420862.2020.1871171
Description
Summary:T-cell engaging biologics is a class of novel and promising immune-oncology compounds that leverage the immune system to eradicate cancer. Here, we compared and contrasted a bispecific diabody-Fc format, which displays a relatively short antigen-binding arm distance, with our bispecific IgG platform. By generating diverse panels of antigen-expressing cells where B cell maturation antigen is either tethered to the cell membrane or located to the juxtamembrane region and masked by elongated structural spacer units, we presented a systematic approach to investigate the role of antigen epitope location and molecular formats in immunological synapse formation and cytotoxicity. We demonstrated that diabody-Fc is more potent for antigen epitopes located in the membrane distal region, while bispecific IgG is more efficient for membrane-proximal epitopes. Additionally, we explored other parameters, including receptor density, antigen-binding affinity, and kinetics. Our results show that molecular format and antigen epitope location, which jointly determine the intermembrane distance between target cells and T cells, allow decoupling of cytotoxicity and cytokine release, while antigen-binding affinities appear to be positively correlated with both readouts. Our work offers new insight that could potentially lead to a wider therapeutic window for T-cell engaging biologics in general.
ISSN:1942-0862
1942-0870