Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements

<p>Remote-sensing measurements by light detection and ranging (lidar) instruments are fundamental for the monitoring of altitude-resolved aerosol optical properties. Here we validate vertical profiles of aerosol backscatter coefficient (<span class="inline-formula"><i>β&l...

Full description

Bibliographic Details
Main Authors: S. Brunamonti, G. Martucci, G. Romanens, Y. Poltera, F. G. Wienhold, M. Hervo, A. Haefele, F. Navas-Guzmán
Format: Article
Language:English
Published: Copernicus Publications 2021-02-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/2267/2021/acp-21-2267-2021.pdf
_version_ 1818413753123733504
author S. Brunamonti
S. Brunamonti
G. Martucci
G. Romanens
Y. Poltera
F. G. Wienhold
M. Hervo
A. Haefele
F. Navas-Guzmán
F. Navas-Guzmán
author_facet S. Brunamonti
S. Brunamonti
G. Martucci
G. Romanens
Y. Poltera
F. G. Wienhold
M. Hervo
A. Haefele
F. Navas-Guzmán
F. Navas-Guzmán
author_sort S. Brunamonti
collection DOAJ
description <p>Remote-sensing measurements by light detection and ranging (lidar) instruments are fundamental for the monitoring of altitude-resolved aerosol optical properties. Here we validate vertical profiles of aerosol backscatter coefficient (<span class="inline-formula"><i>β</i><sub>aer</sub></span>) measured by two independent lidar systems using co-located balloon-borne measurements performed by Compact Optical Backscatter Aerosol Detector (COBALD) sondes. COBALD provides high-precision in situ measurements of <span class="inline-formula"><i>β</i><sub>aer</sub></span> at two wavelengths (455 and 940 nm). The two analyzed lidar systems are the research Raman Lidar for Meteorological Observations (RALMO) and the commercial CHM15K ceilometer (Lufft, Germany). We consider in total 17 RALMO and 31 CHM15K profiles, co-located with simultaneous COBALD soundings performed throughout the years 2014–2019 at the MeteoSwiss observatory of Payerne (Switzerland). The RALMO (355 nm) and CHM15K (1064 nm) measurements are converted to 455 and 940 nm, respectively, using the Ångström exponent profiles retrieved from COBALD data. To account for the different receiver field-of-view (FOV) angles between the two lidars (0.01–0.02<span class="inline-formula"><sup>∘</sup></span>) and COBALD (6<span class="inline-formula"><sup>∘</sup></span>), we derive a custom-made correction using Mie-theory scattering simulations. Our analysis shows that both lidar instruments achieve on average a good agreement with COBALD measurements in the boundary layer and free troposphere, up to 6 km altitude. For medium-high-aerosol-content measurements at altitudes below 3 km, the mean <span class="inline-formula">±</span> standard deviation difference in <span class="inline-formula"><i>β</i><sub>aer</sub></span> calculated from all considered soundings is <span class="inline-formula">−2</span> % <span class="inline-formula">±</span> 37 % (<span class="inline-formula">−0.018</span> <span class="inline-formula">±</span> 0.237 Mm<span class="inline-formula"><sup>−1</sup></span> sr<span class="inline-formula"><sup>−1</sup></span> at 455 nm) for <span class="inline-formula">RALMO−COBALD</span> and <span class="inline-formula">+</span>5 % <span class="inline-formula">±</span> 43 % (<span class="inline-formula">+</span>0.009 <span class="inline-formula">±</span> 0.185 Mm<span class="inline-formula"><sup>−1</sup></span> sr<span class="inline-formula"><sup>−1</sup></span> at 940 mm) for <span class="inline-formula">CHM15K−COBALD</span>. Above 3 km altitude, absolute deviations generally decrease, while relative deviations increase due to the prevalence of air masses with low aerosol content. Uncertainties related to the FOV correction and spatial- and temporal-variability effects (associated with the balloon's drift with altitude and different integration times) contribute to the large standard deviations observed at low altitudes. The lack of information on the aerosol size distribution and the high atmospheric variability prevent an accurate quantification of these effects. Nevertheless, the excellent agreement observed in individual profiles, including fine and complex structures in the <span class="inline-formula"><i>β</i><sub>aer</sub></span> vertical distribution, shows that under optimal conditions, the discrepancies with the in situ measurements are typically comparable to the estimated statistical uncertainties in the remote-sensing measurements. Therefore, we conclude that <span class="inline-formula"><i>β</i><sub>aer</sub></span> profiles measured by the RALMO and CHM15K lidar systems are in good agreement with in situ measurements by COBALD sondes up to 6 km altitude.</p>
first_indexed 2024-12-14T11:08:12Z
format Article
id doaj.art-68ad2d7539a041f0893b6f7ecad90684
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-14T11:08:12Z
publishDate 2021-02-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-68ad2d7539a041f0893b6f7ecad906842022-12-21T23:04:24ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-02-01212267228510.5194/acp-21-2267-2021Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurementsS. Brunamonti0S. Brunamonti1G. Martucci2G. Romanens3Y. Poltera4F. G. Wienhold5M. Hervo6A. Haefele7F. Navas-Guzmán8F. Navas-Guzmán9Federal Office of Meteorology and Climatology (MeteoSwiss), Payerne, Switzerlandnow at: Swiss Federal Laboratory of Material Sciences and Technology (Empa), Laboratory for Air Pollution/ Environmental Technology, Dübendorf, SwitzerlandFederal Office of Meteorology and Climatology (MeteoSwiss), Payerne, SwitzerlandFederal Office of Meteorology and Climatology (MeteoSwiss), Payerne, SwitzerlandSwiss Federal Institute of Technology (ETH), Zürich, SwitzerlandSwiss Federal Institute of Technology (ETH), Zürich, SwitzerlandFederal Office of Meteorology and Climatology (MeteoSwiss), Payerne, SwitzerlandFederal Office of Meteorology and Climatology (MeteoSwiss), Payerne, SwitzerlandFederal Office of Meteorology and Climatology (MeteoSwiss), Payerne, SwitzerlandAndalusian Institute for Earth System Research, IISTA-CEAMA, University of Granada, Junta de Andalucía, Granada 18006, Spain<p>Remote-sensing measurements by light detection and ranging (lidar) instruments are fundamental for the monitoring of altitude-resolved aerosol optical properties. Here we validate vertical profiles of aerosol backscatter coefficient (<span class="inline-formula"><i>β</i><sub>aer</sub></span>) measured by two independent lidar systems using co-located balloon-borne measurements performed by Compact Optical Backscatter Aerosol Detector (COBALD) sondes. COBALD provides high-precision in situ measurements of <span class="inline-formula"><i>β</i><sub>aer</sub></span> at two wavelengths (455 and 940 nm). The two analyzed lidar systems are the research Raman Lidar for Meteorological Observations (RALMO) and the commercial CHM15K ceilometer (Lufft, Germany). We consider in total 17 RALMO and 31 CHM15K profiles, co-located with simultaneous COBALD soundings performed throughout the years 2014–2019 at the MeteoSwiss observatory of Payerne (Switzerland). The RALMO (355 nm) and CHM15K (1064 nm) measurements are converted to 455 and 940 nm, respectively, using the Ångström exponent profiles retrieved from COBALD data. To account for the different receiver field-of-view (FOV) angles between the two lidars (0.01–0.02<span class="inline-formula"><sup>∘</sup></span>) and COBALD (6<span class="inline-formula"><sup>∘</sup></span>), we derive a custom-made correction using Mie-theory scattering simulations. Our analysis shows that both lidar instruments achieve on average a good agreement with COBALD measurements in the boundary layer and free troposphere, up to 6 km altitude. For medium-high-aerosol-content measurements at altitudes below 3 km, the mean <span class="inline-formula">±</span> standard deviation difference in <span class="inline-formula"><i>β</i><sub>aer</sub></span> calculated from all considered soundings is <span class="inline-formula">−2</span> % <span class="inline-formula">±</span> 37 % (<span class="inline-formula">−0.018</span> <span class="inline-formula">±</span> 0.237 Mm<span class="inline-formula"><sup>−1</sup></span> sr<span class="inline-formula"><sup>−1</sup></span> at 455 nm) for <span class="inline-formula">RALMO−COBALD</span> and <span class="inline-formula">+</span>5 % <span class="inline-formula">±</span> 43 % (<span class="inline-formula">+</span>0.009 <span class="inline-formula">±</span> 0.185 Mm<span class="inline-formula"><sup>−1</sup></span> sr<span class="inline-formula"><sup>−1</sup></span> at 940 mm) for <span class="inline-formula">CHM15K−COBALD</span>. Above 3 km altitude, absolute deviations generally decrease, while relative deviations increase due to the prevalence of air masses with low aerosol content. Uncertainties related to the FOV correction and spatial- and temporal-variability effects (associated with the balloon's drift with altitude and different integration times) contribute to the large standard deviations observed at low altitudes. The lack of information on the aerosol size distribution and the high atmospheric variability prevent an accurate quantification of these effects. Nevertheless, the excellent agreement observed in individual profiles, including fine and complex structures in the <span class="inline-formula"><i>β</i><sub>aer</sub></span> vertical distribution, shows that under optimal conditions, the discrepancies with the in situ measurements are typically comparable to the estimated statistical uncertainties in the remote-sensing measurements. Therefore, we conclude that <span class="inline-formula"><i>β</i><sub>aer</sub></span> profiles measured by the RALMO and CHM15K lidar systems are in good agreement with in situ measurements by COBALD sondes up to 6 km altitude.</p>https://acp.copernicus.org/articles/21/2267/2021/acp-21-2267-2021.pdf
spellingShingle S. Brunamonti
S. Brunamonti
G. Martucci
G. Romanens
Y. Poltera
F. G. Wienhold
M. Hervo
A. Haefele
F. Navas-Guzmán
F. Navas-Guzmán
Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements
Atmospheric Chemistry and Physics
title Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements
title_full Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements
title_fullStr Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements
title_full_unstemmed Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements
title_short Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements
title_sort validation of aerosol backscatter profiles from raman lidar and ceilometer using balloon borne measurements
url https://acp.copernicus.org/articles/21/2267/2021/acp-21-2267-2021.pdf
work_keys_str_mv AT sbrunamonti validationofaerosolbackscatterprofilesfromramanlidarandceilometerusingballoonbornemeasurements
AT sbrunamonti validationofaerosolbackscatterprofilesfromramanlidarandceilometerusingballoonbornemeasurements
AT gmartucci validationofaerosolbackscatterprofilesfromramanlidarandceilometerusingballoonbornemeasurements
AT gromanens validationofaerosolbackscatterprofilesfromramanlidarandceilometerusingballoonbornemeasurements
AT ypoltera validationofaerosolbackscatterprofilesfromramanlidarandceilometerusingballoonbornemeasurements
AT fgwienhold validationofaerosolbackscatterprofilesfromramanlidarandceilometerusingballoonbornemeasurements
AT mhervo validationofaerosolbackscatterprofilesfromramanlidarandceilometerusingballoonbornemeasurements
AT ahaefele validationofaerosolbackscatterprofilesfromramanlidarandceilometerusingballoonbornemeasurements
AT fnavasguzman validationofaerosolbackscatterprofilesfromramanlidarandceilometerusingballoonbornemeasurements
AT fnavasguzman validationofaerosolbackscatterprofilesfromramanlidarandceilometerusingballoonbornemeasurements