Physicochemical Characteristics, Techno-Functionalities, and Amino Acid Profile of <i>Prionoplus reticularis</i> (Huhu) Larvae and Pupae Protein Extracts

The amino acid profile, techno-functionalities (foaming stability/capacity, emulsion stability/capacity, solubility, and coagulation), and physicochemical characteristics (colour, particle size, surface hydrophobicity, Fourier-transform infrared spectroscopy, and differential scanning calorimetry) o...

Full description

Bibliographic Details
Main Authors: Ruchita Rao Kavle, Patrick James Nolan, Alaa El-Din Ahmed Bekhit, Alan Carne, James David Morton, Dominic Agyei
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/12/2/417
Description
Summary:The amino acid profile, techno-functionalities (foaming stability/capacity, emulsion stability/capacity, solubility, and coagulation), and physicochemical characteristics (colour, particle size, surface hydrophobicity, Fourier-transform infrared spectroscopy, and differential scanning calorimetry) of protein extracts (PE) obtained from <i>Prionoplus reticularis</i> (Huhu grub) larvae (HLPE) and pupae (HPPE) were investigated. Total essential amino acid contents of 386.7 and 411.7 mg/g protein were observed in HLPE and HPPE, respectively. The essential amino acid index (EAAI) was 3.3 and 3.4 for HLPE and HPPE, respectively, demonstrating their nutritional equivalence. A unique nitrogen-to-protein conversion constant, k, and the corresponding protein content of the extracts were 6.1 and 6.4 and 72.1% and 76.5%, respectively. HLPE (37.1 J/g) had a lower enthalpy than HPPE (54.1 J/g). HPPE (1% <i>w/v</i>) exhibited a foaming capacity of 50.7%, which was higher than that of HLPE (41.7%) at 150 min. The foaming stability was 75.3% for HLPE and 73.1% for HPPE after 120 min. Both protein extracts (1% <i>w/v</i>) had emulsifying capacities that were 96.8% stable after 60 min. Therefore, protein extracts from Huhu larvae and pupae are of a good nutritional quality (based on their EAAI) and have techno-functional properties, such as foaming and emulsification, that afford them potential for certain food technology applications.
ISSN:2304-8158