Area and perimeter covered by anomalous diffusion processes

We investigate the geometric properties of two-dimensional continuous time random walks that are used extensively to model stochastic processes exhibiting anomalous diffusion in a variety of different fields. Using the concept of subordination, we determine exact analytical expressions for the avera...

Full description

Bibliographic Details
Main Authors: Mirko Luković, Theo Geisel, Stephan Eule
Format: Article
Language:English
Published: IOP Publishing 2013-01-01
Series:New Journal of Physics
Online Access:https://doi.org/10.1088/1367-2630/15/6/063034
Description
Summary:We investigate the geometric properties of two-dimensional continuous time random walks that are used extensively to model stochastic processes exhibiting anomalous diffusion in a variety of different fields. Using the concept of subordination, we determine exact analytical expressions for the average perimeter and area of the convex hulls for this class of non-Markovian processes. As the convex hull is a simple measure to estimate the home range of animals, our results give analytical estimates for the home range of foraging animals that perform sub-diffusive search strategies such as some Mediterranean seabirds and animals that ambush their prey. We also apply our results to Levy flights where possible.
ISSN:1367-2630