Decursinol Angelate Inhibits Glutamate Dehydrogenase 1 Activity and Induces Intrinsic Apoptosis in MDR-CRC Cells
Colorectal cancer (CRC) was the second most commonly diagnosed cancer worldwide and the second most common cause of cancer-related deaths in Europe in 2020. After CRC patients’ recovery, in many cases a patient’s tumor returns and develops chemoresistance, which has remained a major challenge worldw...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-07-01
|
Series: | Cancers |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-6694/15/14/3541 |
_version_ | 1797589964315164672 |
---|---|
author | Sukkum Ngullie Chang Sun Chul Kang |
author_facet | Sukkum Ngullie Chang Sun Chul Kang |
author_sort | Sukkum Ngullie Chang |
collection | DOAJ |
description | Colorectal cancer (CRC) was the second most commonly diagnosed cancer worldwide and the second most common cause of cancer-related deaths in Europe in 2020. After CRC patients’ recovery, in many cases a patient’s tumor returns and develops chemoresistance, which has remained a major challenge worldwide. We previously published our novel findings on the role of DA in inhibiting the activity of GDH1 using in silico and enzymatic assays. No studies have been conducted so far to explain the inhibitory role of DA against glutamate dehydrogenase in MDR-CRC cells. We developed a multidrug-resistant colorectal cancer cell line, HCT-116<sup>MDR</sup>, after treatment with cisplatin and 5-fluorouracil. We confirmed the MDR phenotype by evaluating the expression of MDR1, ABCB5, extracellular vesicles, polyploidy, DNA damage response markers and GDH1 in comparison with parental HCT-116<sup>WT</sup> (HCT-116 wild type). Following confirmation, we determined the IC<sub>50</sub> and performed clonogenic assay for the efficacy of decursinol angelate (DA) against HCT-116<sup>MDR</sup> (HCT-116 multidrug resistant). Subsequently, we evaluated the novel interactions of DA with GDH1 and the expression of important markers regulating redox homeostasis and cell death. DA treatment markedly downregulated the expression of GDH1 at 50 and 75 μM after 36 h, which directly correlated with reduced expression of the Krebs cycle metabolites α-ketoglutarate and fumarate. We also observed a systematic dose-dependent downregulation of MDR1, ABCB5, TERT, ERCC1 and γH2AX. Similarly, the expression of important antioxidant markers was also downregulated. The markers for intrinsic apoptosis were notably upregulated in a dose-dependent manner. The results were further validated by flow cytometry and TUNEL assay. Additionally, GDH1 knockdown on both HCT-116<sup>WT</sup> and HCT-116<sup>MDR</sup> corresponded to a decreased expression of γH2AX, catalase, SOD1 and Gpx-1, and an eventual increase in apoptosis markers. In conclusion, inhibition of GDH1 increased ROS production, decreased cell proliferation and increased cell death. |
first_indexed | 2024-03-11T01:13:37Z |
format | Article |
id | doaj.art-68cdf914729b41f58f49ed9da6acaede |
institution | Directory Open Access Journal |
issn | 2072-6694 |
language | English |
last_indexed | 2024-03-11T01:13:37Z |
publishDate | 2023-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Cancers |
spelling | doaj.art-68cdf914729b41f58f49ed9da6acaede2023-11-18T18:40:30ZengMDPI AGCancers2072-66942023-07-011514354110.3390/cancers15143541Decursinol Angelate Inhibits Glutamate Dehydrogenase 1 Activity and Induces Intrinsic Apoptosis in MDR-CRC CellsSukkum Ngullie Chang0Sun Chul Kang1Department of Biotechnology, Daegu University, Gyeongsan 38453, Republic of KoreaDepartment of Biotechnology, Daegu University, Gyeongsan 38453, Republic of KoreaColorectal cancer (CRC) was the second most commonly diagnosed cancer worldwide and the second most common cause of cancer-related deaths in Europe in 2020. After CRC patients’ recovery, in many cases a patient’s tumor returns and develops chemoresistance, which has remained a major challenge worldwide. We previously published our novel findings on the role of DA in inhibiting the activity of GDH1 using in silico and enzymatic assays. No studies have been conducted so far to explain the inhibitory role of DA against glutamate dehydrogenase in MDR-CRC cells. We developed a multidrug-resistant colorectal cancer cell line, HCT-116<sup>MDR</sup>, after treatment with cisplatin and 5-fluorouracil. We confirmed the MDR phenotype by evaluating the expression of MDR1, ABCB5, extracellular vesicles, polyploidy, DNA damage response markers and GDH1 in comparison with parental HCT-116<sup>WT</sup> (HCT-116 wild type). Following confirmation, we determined the IC<sub>50</sub> and performed clonogenic assay for the efficacy of decursinol angelate (DA) against HCT-116<sup>MDR</sup> (HCT-116 multidrug resistant). Subsequently, we evaluated the novel interactions of DA with GDH1 and the expression of important markers regulating redox homeostasis and cell death. DA treatment markedly downregulated the expression of GDH1 at 50 and 75 μM after 36 h, which directly correlated with reduced expression of the Krebs cycle metabolites α-ketoglutarate and fumarate. We also observed a systematic dose-dependent downregulation of MDR1, ABCB5, TERT, ERCC1 and γH2AX. Similarly, the expression of important antioxidant markers was also downregulated. The markers for intrinsic apoptosis were notably upregulated in a dose-dependent manner. The results were further validated by flow cytometry and TUNEL assay. Additionally, GDH1 knockdown on both HCT-116<sup>WT</sup> and HCT-116<sup>MDR</sup> corresponded to a decreased expression of γH2AX, catalase, SOD1 and Gpx-1, and an eventual increase in apoptosis markers. In conclusion, inhibition of GDH1 increased ROS production, decreased cell proliferation and increased cell death.https://www.mdpi.com/2072-6694/15/14/3541multidrug-resistant colorectal cancer cells (MDR-CRC)decursinol angelate (DA)glutamate dehydrogenase 1 (GDH1)apoptosis |
spellingShingle | Sukkum Ngullie Chang Sun Chul Kang Decursinol Angelate Inhibits Glutamate Dehydrogenase 1 Activity and Induces Intrinsic Apoptosis in MDR-CRC Cells Cancers multidrug-resistant colorectal cancer cells (MDR-CRC) decursinol angelate (DA) glutamate dehydrogenase 1 (GDH1) apoptosis |
title | Decursinol Angelate Inhibits Glutamate Dehydrogenase 1 Activity and Induces Intrinsic Apoptosis in MDR-CRC Cells |
title_full | Decursinol Angelate Inhibits Glutamate Dehydrogenase 1 Activity and Induces Intrinsic Apoptosis in MDR-CRC Cells |
title_fullStr | Decursinol Angelate Inhibits Glutamate Dehydrogenase 1 Activity and Induces Intrinsic Apoptosis in MDR-CRC Cells |
title_full_unstemmed | Decursinol Angelate Inhibits Glutamate Dehydrogenase 1 Activity and Induces Intrinsic Apoptosis in MDR-CRC Cells |
title_short | Decursinol Angelate Inhibits Glutamate Dehydrogenase 1 Activity and Induces Intrinsic Apoptosis in MDR-CRC Cells |
title_sort | decursinol angelate inhibits glutamate dehydrogenase 1 activity and induces intrinsic apoptosis in mdr crc cells |
topic | multidrug-resistant colorectal cancer cells (MDR-CRC) decursinol angelate (DA) glutamate dehydrogenase 1 (GDH1) apoptosis |
url | https://www.mdpi.com/2072-6694/15/14/3541 |
work_keys_str_mv | AT sukkumngulliechang decursinolangelateinhibitsglutamatedehydrogenase1activityandinducesintrinsicapoptosisinmdrcrccells AT sunchulkang decursinolangelateinhibitsglutamatedehydrogenase1activityandinducesintrinsicapoptosisinmdrcrccells |