CDK6 Degradation Is Counteracted by p16<sup>INK4A</sup> and p18<sup>INK4C</sup> in AML

Cyclin-dependent kinase 6 (CDK6) represents a novel therapeutic target for the treatment of certain subtypes of acute myeloid leukaemia (AML). CDK4/6 kinase inhibitors have been widely studied in many cancer types and their effects may be limited by primary and secondary resistance mechanisms. CDK4/...

Full description

Bibliographic Details
Main Authors: Belinda S. Schmalzbauer, Teresemary Thondanpallil, Gerwin Heller, Alessia Schirripa, Clio-Melina Sperl, Isabella M. Mayer, Vanessa M. Knab, Sofie Nebenfuehr, Markus Zojer, André C. Mueller, Frédéric Fontaine, Thorsten Klampfl, Veronika Sexl, Karoline Kollmann
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/14/6/1554
Description
Summary:Cyclin-dependent kinase 6 (CDK6) represents a novel therapeutic target for the treatment of certain subtypes of acute myeloid leukaemia (AML). CDK4/6 kinase inhibitors have been widely studied in many cancer types and their effects may be limited by primary and secondary resistance mechanisms. CDK4/6 degraders, which eliminate kinase-dependent and kinase-independent effects, have been suggested as an alternative therapeutic option. We show that the efficacy of the CDK6-specific protein degrader BSJ-03-123 varies among AML subtypes and depends on the low expression of the INK4 proteins p16<sup>INK4A</sup> and p18<sup>INK4C</sup>. INK4 protein levels are significantly elevated in KMT2A-MLLT3+ cells compared to RUNX1-RUNX1T1+ cells, contributing to the different CDK6 degradation efficacy. We demonstrate that CDK6 complexes containing p16<sup>INK4A</sup> or p18<sup>INK4C</sup> are protected from BSJ-mediated degradation and that INK4 levels define the proliferative response to CDK6 degradation. These findings define INK4 proteins as predictive markers for CDK6 degradation-targeted therapies in AML.
ISSN:2072-6694