Research Progress in Fluorescent Probes for Arsenic Species

Arsenic is a toxic non-metallic element that is widely found in nature. In addition, arsenic and arsenic compounds are included in the list of Group I carcinogens and toxic water pollutants. Therefore, rapid and efficient methods for detecting arsenic are necessary. In the past decade, a variety of...

Full description

Bibliographic Details
Main Authors: Yunliang Qiu, Shuaibing Yu, Lianzhi Li
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/27/23/8497
Description
Summary:Arsenic is a toxic non-metallic element that is widely found in nature. In addition, arsenic and arsenic compounds are included in the list of Group I carcinogens and toxic water pollutants. Therefore, rapid and efficient methods for detecting arsenic are necessary. In the past decade, a variety of small molecule fluorescent probes have been developed, which has been widely recognized for their rapidness, efficiency, convenience and sensitivity. With the development of new nanomaterials (AuNPs, CDs and QDs), organic molecules and biomolecules, the conventional detection of arsenic species based on fluorescence spectroscopy is gradually transforming from the laboratory to the portable kit. Therefore, in view of the current research status, this review introduces the research progress of both traditional and newly developed fluorescence spectrometry based on novel materials for arsenic detection, and discusses the potential of this technology in the rapid screening and field testing of water samples contaminated with arsenic. The review also discusses the problems that still exist in this field, as well as the expectations.
ISSN:1420-3049