A Genomic Map of Climate Adaptation in Arabidopsis thaliana at a Micro-Geographic Scale

Understanding the genetic bases underlying climate adaptation is a key element to predict the potential of species to face climate warming. Although substantial climate variation is observed at a micro-geographic scale, most genomic maps of climate adaptation have been established at broader geograp...

Full description

Bibliographic Details
Main Authors: Léa Frachon, Claudia Bartoli, Sébastien Carrère, Olivier Bouchez, Adeline Chaubet, Mathieu Gautier, Dominique Roby, Fabrice Roux
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-07-01
Series:Frontiers in Plant Science
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fpls.2018.00967/full
_version_ 1819028033863942144
author Léa Frachon
Léa Frachon
Léa Frachon
Claudia Bartoli
Sébastien Carrère
Olivier Bouchez
Adeline Chaubet
Mathieu Gautier
Dominique Roby
Fabrice Roux
author_facet Léa Frachon
Léa Frachon
Léa Frachon
Claudia Bartoli
Sébastien Carrère
Olivier Bouchez
Adeline Chaubet
Mathieu Gautier
Dominique Roby
Fabrice Roux
author_sort Léa Frachon
collection DOAJ
description Understanding the genetic bases underlying climate adaptation is a key element to predict the potential of species to face climate warming. Although substantial climate variation is observed at a micro-geographic scale, most genomic maps of climate adaptation have been established at broader geographical scales. Here, by using a Pool-Seq approach combined with a Bayesian hierarchical model that control for confounding by population structure, we performed a genome–environment association (GEA) analysis to investigate the genetic basis of adaptation to six climate variables in 168 natural populations of Arabidopsis thaliana distributed in south-west of France. Climate variation among the 168 populations represented up to 24% of climate variation among 521 European locations where A. thaliana inhabits. We identified neat and strong peaks of association, with most of the associated SNPs being significantly enriched in likely functional variants and/or in the extreme tail of genetic differentiation among populations. Furthermore, genes involved in transcriptional mechanisms appear predominant in plant functions associated with local climate adaptation. Globally, our results suggest that climate adaptation is an important driver of genomic variation in A. thaliana at a small spatial scale and mainly involves genome-wide changes in fundamental mechanisms of gene regulation. The identification of climate-adaptive genetic loci at a micro-geographic scale also highlights the importance to include within-species genetic diversity in ecological niche models for projecting potential species distributional shifts over short geographic distances.
first_indexed 2024-12-21T05:51:56Z
format Article
id doaj.art-68e81135dd364571a7e967b73d8fcbb0
institution Directory Open Access Journal
issn 1664-462X
language English
last_indexed 2024-12-21T05:51:56Z
publishDate 2018-07-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Plant Science
spelling doaj.art-68e81135dd364571a7e967b73d8fcbb02022-12-21T19:13:57ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2018-07-01910.3389/fpls.2018.00967375588A Genomic Map of Climate Adaptation in Arabidopsis thaliana at a Micro-Geographic ScaleLéa Frachon0Léa Frachon1Léa Frachon2Claudia Bartoli3Sébastien Carrère4Olivier Bouchez5Adeline Chaubet6Mathieu Gautier7Dominique Roby8Fabrice Roux9Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, FranceDipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, ItalyDepartment of Systematic and Evolutionary Botany, University of Zurich, Zürich, SwitzerlandLaboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, FranceLaboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, FranceInstitut National de la Recherche Agronomique, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, FranceInstitut National de la Recherche Agronomique, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, FranceCentre de Biologie pour la Gestion des Populations, Institut National de la Recherche Agronomique, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut de Recherche pour le Développement, Montpellier SupAgro, Université de Montpellier, Montpellier, FranceLaboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, FranceLaboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, FranceUnderstanding the genetic bases underlying climate adaptation is a key element to predict the potential of species to face climate warming. Although substantial climate variation is observed at a micro-geographic scale, most genomic maps of climate adaptation have been established at broader geographical scales. Here, by using a Pool-Seq approach combined with a Bayesian hierarchical model that control for confounding by population structure, we performed a genome–environment association (GEA) analysis to investigate the genetic basis of adaptation to six climate variables in 168 natural populations of Arabidopsis thaliana distributed in south-west of France. Climate variation among the 168 populations represented up to 24% of climate variation among 521 European locations where A. thaliana inhabits. We identified neat and strong peaks of association, with most of the associated SNPs being significantly enriched in likely functional variants and/or in the extreme tail of genetic differentiation among populations. Furthermore, genes involved in transcriptional mechanisms appear predominant in plant functions associated with local climate adaptation. Globally, our results suggest that climate adaptation is an important driver of genomic variation in A. thaliana at a small spatial scale and mainly involves genome-wide changes in fundamental mechanisms of gene regulation. The identification of climate-adaptive genetic loci at a micro-geographic scale also highlights the importance to include within-species genetic diversity in ecological niche models for projecting potential species distributional shifts over short geographic distances.https://www.frontiersin.org/article/10.3389/fpls.2018.00967/fullArabidopsis thalianaBayesian hierarchical modelclimate changegenome–environment association analysislocal adaptationPool-Seq
spellingShingle Léa Frachon
Léa Frachon
Léa Frachon
Claudia Bartoli
Sébastien Carrère
Olivier Bouchez
Adeline Chaubet
Mathieu Gautier
Dominique Roby
Fabrice Roux
A Genomic Map of Climate Adaptation in Arabidopsis thaliana at a Micro-Geographic Scale
Frontiers in Plant Science
Arabidopsis thaliana
Bayesian hierarchical model
climate change
genome–environment association analysis
local adaptation
Pool-Seq
title A Genomic Map of Climate Adaptation in Arabidopsis thaliana at a Micro-Geographic Scale
title_full A Genomic Map of Climate Adaptation in Arabidopsis thaliana at a Micro-Geographic Scale
title_fullStr A Genomic Map of Climate Adaptation in Arabidopsis thaliana at a Micro-Geographic Scale
title_full_unstemmed A Genomic Map of Climate Adaptation in Arabidopsis thaliana at a Micro-Geographic Scale
title_short A Genomic Map of Climate Adaptation in Arabidopsis thaliana at a Micro-Geographic Scale
title_sort genomic map of climate adaptation in arabidopsis thaliana at a micro geographic scale
topic Arabidopsis thaliana
Bayesian hierarchical model
climate change
genome–environment association analysis
local adaptation
Pool-Seq
url https://www.frontiersin.org/article/10.3389/fpls.2018.00967/full
work_keys_str_mv AT leafrachon agenomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT leafrachon agenomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT leafrachon agenomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT claudiabartoli agenomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT sebastiencarrere agenomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT olivierbouchez agenomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT adelinechaubet agenomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT mathieugautier agenomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT dominiqueroby agenomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT fabriceroux agenomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT leafrachon genomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT leafrachon genomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT leafrachon genomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT claudiabartoli genomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT sebastiencarrere genomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT olivierbouchez genomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT adelinechaubet genomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT mathieugautier genomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT dominiqueroby genomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale
AT fabriceroux genomicmapofclimateadaptationinarabidopsisthalianaatamicrogeographicscale