An Innovative Design of Substitution-Boxes Using Cubic Polynomial Mapping

In this paper, we propose to present a novel technique for designing cryptographically strong substitution-boxes using cubic polynomial mapping. The proposed cubic polynomial mapping is proficient to map the input sequence to a strong 8 × 8 S-box meeting the requirements of a bijective func...

Full description

Bibliographic Details
Main Authors: Amjad Hussain Zahid, Muhammad Junaid Arshad
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/3/437
Description
Summary:In this paper, we propose to present a novel technique for designing cryptographically strong substitution-boxes using cubic polynomial mapping. The proposed cubic polynomial mapping is proficient to map the input sequence to a strong 8 × 8 S-box meeting the requirements of a bijective function. The use of cubic polynomial maintains the simplicity of S-box construction method and found consistent when compared with other existing S-box techniques used to construct S-boxes. An example proposed S-box is obtained which is analytically evaluated using standard performance criteria including nonlinearity, bijection, bit independence, strict avalanche effect, linear approximation probability, and differential uniformity. The performance results are equated with some recently scrutinized S-boxes to ascertain its cryptographic forte. The critical analyses endorse that the proposed S-box construction technique is considerably innovative and effective to generate cryptographic strong substitution-boxes.
ISSN:2073-8994