Magnetic Investigation of Cladded Nuclear Reactor Blocks

The wall, made of ferromagnetic steel, of a nuclear reactor pressure vessel is covered by an austenitic (very weakly ferromagnetic) cladding. In this work, we investigated how the base material and the cladding can be inspected separately from each other by nondestructive magnetic measurements. It w...

Full description

Bibliographic Details
Main Authors: Gábor Vértesy, Antal Gasparics, Ildikó Szenthe, Sándor Bilicz
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/4/1425
Description
Summary:The wall, made of ferromagnetic steel, of a nuclear reactor pressure vessel is covered by an austenitic (very weakly ferromagnetic) cladding. In this work, we investigated how the base material and the cladding can be inspected separately from each other by nondestructive magnetic measurements. It was found that with the proper choice of the magnetizing yoke, these two different materials could be measured independently of each other. The effect of the yoke’s size was studied by the numerical simulation of magnetic flux, pumped into the material during magnetic measurements. Measurements were performed by two different sizes of yokes on pure base material, on base material under cladding and on cladding itself. Experiments verified the results of the simulation. Our results can help for the future practical application of magnetic methods in the regular inspection of nuclear power plants.
ISSN:1996-1944