New Ways to Calculate the Probability in the Bertrand Problem

We give two new ways of calculating the probability of a chord of circumference randomly selected being larger than the side of an equilateral triangle inscribed in the circumference (this problem is known as the Bertrand paradox). The first one employs an immersion in R<sup>4</sup>, and...

Full description

Bibliographic Details
Main Authors: Javier Rodrigo, Mariló López, Sagrario Lantarón
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/1/3
_version_ 1797358463844614144
author Javier Rodrigo
Mariló López
Sagrario Lantarón
author_facet Javier Rodrigo
Mariló López
Sagrario Lantarón
author_sort Javier Rodrigo
collection DOAJ
description We give two new ways of calculating the probability of a chord of circumference randomly selected being larger than the side of an equilateral triangle inscribed in the circumference (this problem is known as the Bertrand paradox). The first one employs an immersion in R<sup>4</sup>, and the second one uses a direct probability measure over the set of chords.
first_indexed 2024-03-08T15:02:24Z
format Article
id doaj.art-69017d96d4b84712a1d7ebd08243e044
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-08T15:02:24Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-69017d96d4b84712a1d7ebd08243e0442024-01-10T15:03:15ZengMDPI AGMathematics2227-73902023-12-01121310.3390/math12010003New Ways to Calculate the Probability in the Bertrand ProblemJavier Rodrigo0Mariló López1Sagrario Lantarón2Departamento de Matemática Aplicada, Universidad Pontificia Comillas, 28015 Madrid, SpainDepartamento de Matemática e Informática Aplicadas a las Ingenierías Civil y Naval, Universidad Politécnica de Madrid, 28040 Madrid, SpainDepartamento de Matemática e Informática Aplicadas a las Ingenierías Civil y Naval, Universidad Politécnica de Madrid, 28040 Madrid, SpainWe give two new ways of calculating the probability of a chord of circumference randomly selected being larger than the side of an equilateral triangle inscribed in the circumference (this problem is known as the Bertrand paradox). The first one employs an immersion in R<sup>4</sup>, and the second one uses a direct probability measure over the set of chords.https://www.mdpi.com/2227-7390/12/1/3probability measuresBertrand paradoxinvariances
spellingShingle Javier Rodrigo
Mariló López
Sagrario Lantarón
New Ways to Calculate the Probability in the Bertrand Problem
Mathematics
probability measures
Bertrand paradox
invariances
title New Ways to Calculate the Probability in the Bertrand Problem
title_full New Ways to Calculate the Probability in the Bertrand Problem
title_fullStr New Ways to Calculate the Probability in the Bertrand Problem
title_full_unstemmed New Ways to Calculate the Probability in the Bertrand Problem
title_short New Ways to Calculate the Probability in the Bertrand Problem
title_sort new ways to calculate the probability in the bertrand problem
topic probability measures
Bertrand paradox
invariances
url https://www.mdpi.com/2227-7390/12/1/3
work_keys_str_mv AT javierrodrigo newwaystocalculatetheprobabilityinthebertrandproblem
AT marilolopez newwaystocalculatetheprobabilityinthebertrandproblem
AT sagrariolantaron newwaystocalculatetheprobabilityinthebertrandproblem