An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model

Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study...

Full description

Bibliographic Details
Main Authors: Erin E Kaiser, J C Poythress, Kelly M Scheulin, Brian J Jurgielewicz, Nicole A Lazar, Cheolwoo Park, Steven L Stice, Jeongyoun Ahn, Franklin D West
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2021-01-01
Series:Neural Regeneration Research
Subjects:
Online Access:http://www.nrronline.org/article.asp?issn=1673-5374;year=2021;volume=16;issue=5;spage=842;epage=850;aulast=Kaiser
_version_ 1818645834226466816
author Erin E Kaiser
J C Poythress
Kelly M Scheulin
Brian J Jurgielewicz
Nicole A Lazar
Cheolwoo Park
Steven L Stice
Jeongyoun Ahn
Franklin D West
author_facet Erin E Kaiser
J C Poythress
Kelly M Scheulin
Brian J Jurgielewicz
Nicole A Lazar
Cheolwoo Park
Steven L Stice
Jeongyoun Ahn
Franklin D West
author_sort Erin E Kaiser
collection DOAJ
description Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study sought to examine the prognostic value of commonly utilized MRI parameters to predict functional outcomes in a porcine model of ischemic stroke. Stroke was induced via permanent middle cerebral artery occlusion. At 24 hours post-stroke, MRI analysis revealed focal ischemic lesions, decreased diffusivity, hemispheric swelling, and white matter degradation. Functional deficits including behavioral abnormalities in open field and novel object exploration as well as spatiotemporal gait impairments were observed at 4 weeks post-stroke. Gaussian graphical models identified specific MRI outputs and functional recovery variables, including white matter integrity and gait performance, that exhibited strong conditional dependencies. Canonical correlation analysis revealed a prognostic relationship between lesion volume and white matter integrity and novel object exploration and gait performance. Consequently, these analyses may also have the potential of predicting patient recovery at chronic time points as pigs and humans share many anatomical similarities (e.g., white matter composition) that have proven to be critical in ischemic stroke pathophysiology. The study was approved by the University of Georgia (UGA) Institutional Animal Care and Use Committee (IACUC; Protocol Number: A2014-07-021-Y3-A11 and 2018-01-029-Y1-A5) on November 22, 2017.
first_indexed 2024-12-17T00:37:02Z
format Article
id doaj.art-69076cd2a3cc46b7a4657fa309e64552
institution Directory Open Access Journal
issn 1673-5374
language English
last_indexed 2024-12-17T00:37:02Z
publishDate 2021-01-01
publisher Wolters Kluwer Medknow Publications
record_format Article
series Neural Regeneration Research
spelling doaj.art-69076cd2a3cc46b7a4657fa309e645522022-12-21T22:10:07ZengWolters Kluwer Medknow PublicationsNeural Regeneration Research1673-53742021-01-0116584285010.4103/1673-5374.297079An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke modelErin E KaiserJ C PoythressKelly M ScheulinBrian J JurgielewiczNicole A LazarCheolwoo ParkSteven L SticeJeongyoun AhnFranklin D WestMagnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study sought to examine the prognostic value of commonly utilized MRI parameters to predict functional outcomes in a porcine model of ischemic stroke. Stroke was induced via permanent middle cerebral artery occlusion. At 24 hours post-stroke, MRI analysis revealed focal ischemic lesions, decreased diffusivity, hemispheric swelling, and white matter degradation. Functional deficits including behavioral abnormalities in open field and novel object exploration as well as spatiotemporal gait impairments were observed at 4 weeks post-stroke. Gaussian graphical models identified specific MRI outputs and functional recovery variables, including white matter integrity and gait performance, that exhibited strong conditional dependencies. Canonical correlation analysis revealed a prognostic relationship between lesion volume and white matter integrity and novel object exploration and gait performance. Consequently, these analyses may also have the potential of predicting patient recovery at chronic time points as pigs and humans share many anatomical similarities (e.g., white matter composition) that have proven to be critical in ischemic stroke pathophysiology. The study was approved by the University of Georgia (UGA) Institutional Animal Care and Use Committee (IACUC; Protocol Number: A2014-07-021-Y3-A11 and 2018-01-029-Y1-A5) on November 22, 2017.http://www.nrronline.org/article.asp?issn=1673-5374;year=2021;volume=16;issue=5;spage=842;epage=850;aulast=Kaiserbehavior testing; canonical correlation analysis; gait analysis; gaussian graphical models; ischemic stroke; magnetic resonance imaging; pig model; principal component analysis
spellingShingle Erin E Kaiser
J C Poythress
Kelly M Scheulin
Brian J Jurgielewicz
Nicole A Lazar
Cheolwoo Park
Steven L Stice
Jeongyoun Ahn
Franklin D West
An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
Neural Regeneration Research
behavior testing; canonical correlation analysis; gait analysis; gaussian graphical models; ischemic stroke; magnetic resonance imaging; pig model; principal component analysis
title An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
title_full An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
title_fullStr An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
title_full_unstemmed An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
title_short An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
title_sort integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
topic behavior testing; canonical correlation analysis; gait analysis; gaussian graphical models; ischemic stroke; magnetic resonance imaging; pig model; principal component analysis
url http://www.nrronline.org/article.asp?issn=1673-5374;year=2021;volume=16;issue=5;spage=842;epage=850;aulast=Kaiser
work_keys_str_mv AT erinekaiser anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT jcpoythress anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT kellymscheulin anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT brianjjurgielewicz anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT nicolealazar anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT cheolwoopark anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT stevenlstice anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT jeongyounahn anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT franklindwest anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT erinekaiser integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT jcpoythress integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT kellymscheulin integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT brianjjurgielewicz integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT nicolealazar integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT cheolwoopark integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT stevenlstice integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT jeongyounahn integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel
AT franklindwest integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel