An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model
Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer Medknow Publications
2021-01-01
|
Series: | Neural Regeneration Research |
Subjects: | |
Online Access: | http://www.nrronline.org/article.asp?issn=1673-5374;year=2021;volume=16;issue=5;spage=842;epage=850;aulast=Kaiser |
_version_ | 1818645834226466816 |
---|---|
author | Erin E Kaiser J C Poythress Kelly M Scheulin Brian J Jurgielewicz Nicole A Lazar Cheolwoo Park Steven L Stice Jeongyoun Ahn Franklin D West |
author_facet | Erin E Kaiser J C Poythress Kelly M Scheulin Brian J Jurgielewicz Nicole A Lazar Cheolwoo Park Steven L Stice Jeongyoun Ahn Franklin D West |
author_sort | Erin E Kaiser |
collection | DOAJ |
description | Magnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study sought to examine the prognostic value of commonly utilized MRI parameters to predict functional outcomes in a porcine model of ischemic stroke. Stroke was induced via permanent middle cerebral artery occlusion. At 24 hours post-stroke, MRI analysis revealed focal ischemic lesions, decreased diffusivity, hemispheric swelling, and white matter degradation. Functional deficits including behavioral abnormalities in open field and novel object exploration as well as spatiotemporal gait impairments were observed at 4 weeks post-stroke. Gaussian graphical models identified specific MRI outputs and functional recovery variables, including white matter integrity and gait performance, that exhibited strong conditional dependencies. Canonical correlation analysis revealed a prognostic relationship between lesion volume and white matter integrity and novel object exploration and gait performance. Consequently, these analyses may also have the potential of predicting patient recovery at chronic time points as pigs and humans share many anatomical similarities (e.g., white matter composition) that have proven to be critical in ischemic stroke pathophysiology. The study was approved by the University of Georgia (UGA) Institutional Animal Care and Use Committee (IACUC; Protocol Number: A2014-07-021-Y3-A11 and 2018-01-029-Y1-A5) on November 22, 2017. |
first_indexed | 2024-12-17T00:37:02Z |
format | Article |
id | doaj.art-69076cd2a3cc46b7a4657fa309e64552 |
institution | Directory Open Access Journal |
issn | 1673-5374 |
language | English |
last_indexed | 2024-12-17T00:37:02Z |
publishDate | 2021-01-01 |
publisher | Wolters Kluwer Medknow Publications |
record_format | Article |
series | Neural Regeneration Research |
spelling | doaj.art-69076cd2a3cc46b7a4657fa309e645522022-12-21T22:10:07ZengWolters Kluwer Medknow PublicationsNeural Regeneration Research1673-53742021-01-0116584285010.4103/1673-5374.297079An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke modelErin E KaiserJ C PoythressKelly M ScheulinBrian J JurgielewiczNicole A LazarCheolwoo ParkSteven L SticeJeongyoun AhnFranklin D WestMagnetic resonance imaging (MRI) is a clinically relevant, real-time imaging modality that is frequently utilized to assess stroke type and severity. However, specific MRI biomarkers that can be used to predict long-term functional recovery are still a critical need. Consequently, the present study sought to examine the prognostic value of commonly utilized MRI parameters to predict functional outcomes in a porcine model of ischemic stroke. Stroke was induced via permanent middle cerebral artery occlusion. At 24 hours post-stroke, MRI analysis revealed focal ischemic lesions, decreased diffusivity, hemispheric swelling, and white matter degradation. Functional deficits including behavioral abnormalities in open field and novel object exploration as well as spatiotemporal gait impairments were observed at 4 weeks post-stroke. Gaussian graphical models identified specific MRI outputs and functional recovery variables, including white matter integrity and gait performance, that exhibited strong conditional dependencies. Canonical correlation analysis revealed a prognostic relationship between lesion volume and white matter integrity and novel object exploration and gait performance. Consequently, these analyses may also have the potential of predicting patient recovery at chronic time points as pigs and humans share many anatomical similarities (e.g., white matter composition) that have proven to be critical in ischemic stroke pathophysiology. The study was approved by the University of Georgia (UGA) Institutional Animal Care and Use Committee (IACUC; Protocol Number: A2014-07-021-Y3-A11 and 2018-01-029-Y1-A5) on November 22, 2017.http://www.nrronline.org/article.asp?issn=1673-5374;year=2021;volume=16;issue=5;spage=842;epage=850;aulast=Kaiserbehavior testing; canonical correlation analysis; gait analysis; gaussian graphical models; ischemic stroke; magnetic resonance imaging; pig model; principal component analysis |
spellingShingle | Erin E Kaiser J C Poythress Kelly M Scheulin Brian J Jurgielewicz Nicole A Lazar Cheolwoo Park Steven L Stice Jeongyoun Ahn Franklin D West An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model Neural Regeneration Research behavior testing; canonical correlation analysis; gait analysis; gaussian graphical models; ischemic stroke; magnetic resonance imaging; pig model; principal component analysis |
title | An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model |
title_full | An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model |
title_fullStr | An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model |
title_full_unstemmed | An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model |
title_short | An integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model |
title_sort | integrative multivariate approach for predicting functional recovery using magnetic resonance imaging parameters in a translational pig ischemic stroke model |
topic | behavior testing; canonical correlation analysis; gait analysis; gaussian graphical models; ischemic stroke; magnetic resonance imaging; pig model; principal component analysis |
url | http://www.nrronline.org/article.asp?issn=1673-5374;year=2021;volume=16;issue=5;spage=842;epage=850;aulast=Kaiser |
work_keys_str_mv | AT erinekaiser anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT jcpoythress anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT kellymscheulin anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT brianjjurgielewicz anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT nicolealazar anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT cheolwoopark anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT stevenlstice anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT jeongyounahn anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT franklindwest anintegrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT erinekaiser integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT jcpoythress integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT kellymscheulin integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT brianjjurgielewicz integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT nicolealazar integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT cheolwoopark integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT stevenlstice integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT jeongyounahn integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel AT franklindwest integrativemultivariateapproachforpredictingfunctionalrecoveryusingmagneticresonanceimagingparametersinatranslationalpigischemicstrokemodel |