A diffusive cancer model with virotherapy: Studying the immune response and its analytical simulation

New cancer therapies, methods and protocols are needed to treat affected patients. Oncolytic viral therapy is a good suggestion for such treatment. This paper proposes a diffusive cancer model with virotherapy and an immune response. This work aims to study the aforementioned model while theoretical...

Full description

Bibliographic Details
Main Authors: Noufe H. Aljahdaly, Nouf A. Almushaity
Format: Article
Language:English
Published: AIMS Press 2023-03-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2023553?viewType=HTML
Description
Summary:New cancer therapies, methods and protocols are needed to treat affected patients. Oncolytic viral therapy is a good suggestion for such treatment. This paper proposes a diffusive cancer model with virotherapy and an immune response. This work aims to study the aforementioned model while theoretically including positivity, boundedness and stability, as well as to find the analytical solutions. The analytical solutions are found by using the tanh-expansion method. As a result, we realized that the relative immune cell killing rate can be controlled by the viral burst size. The viral burst size is the number of viruses released from each infected cell during cell lysis. The increasing diffusion of the activated immune system leads to an increase in the uninfected cells. The presented model can be used to study the combination of immunotherapy and virotherapy.
ISSN:2473-6988