A property of Sobolev spaces on complete Riemannian manifolds

Let $(M,g)$ be a complete Riemannian manifold with metric $g$ and the Riemannian volume form $d u$. We consider the $mathbb{R}^{k}$-valued functions $Tin [W^{-1,2}(M)cap L_{loc}^{1}(M)]^{k}$ and $uin [W^{1,2}(M)]^{k}$ on $M$, where $[W^{1,2}(M)]^{k}$ is a Sobolev space on $M$ and $[W^{-1,2}(M)]^{k}...

Full description

Bibliographic Details
Main Author: Ognjen Milatovic
Format: Article
Language:English
Published: Texas State University 2005-07-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2005/77/abstr.html
Description
Summary:Let $(M,g)$ be a complete Riemannian manifold with metric $g$ and the Riemannian volume form $d u$. We consider the $mathbb{R}^{k}$-valued functions $Tin [W^{-1,2}(M)cap L_{loc}^{1}(M)]^{k}$ and $uin [W^{1,2}(M)]^{k}$ on $M$, where $[W^{1,2}(M)]^{k}$ is a Sobolev space on $M$ and $[W^{-1,2}(M)]^{k}$ is its dual. We give a sufficient condition for the equality of $langle T, u angle$ and the integral of $(Tcdot u)$ over $M$, where $langlecdot,cdot angle$ is the duality between $[W^{-1,2}(M)]^{k}$ and $[W^{1,2}(M)]^{k}$. This is an extension to complete Riemannian manifolds of a result of H. Brezis and F. E. Browder.
ISSN:1072-6691