(n, n(n‐1), n‐1) Permutation group codes

Two different subgroups Cn and Ln of symmetric group Sn are first designed and then to construct a family of permutation group codes Pn with code length n, minimum Hamming distance n − 1, cardinalityn(n − 1) and error‐correcting capability n − 2 is composited.

Bibliographic Details
Main Author: Li Peng
Format: Article
Language:English
Published: Wiley 2016-04-01
Series:Electronics Letters
Subjects:
Online Access:https://doi.org/10.1049/el.2015.3997
_version_ 1828138113464008704
author Li Peng
author_facet Li Peng
author_sort Li Peng
collection DOAJ
description Two different subgroups Cn and Ln of symmetric group Sn are first designed and then to construct a family of permutation group codes Pn with code length n, minimum Hamming distance n − 1, cardinalityn(n − 1) and error‐correcting capability n − 2 is composited.
first_indexed 2024-04-11T18:30:56Z
format Article
id doaj.art-6944efb87ece4f1fa756d6a9d8152adb
institution Directory Open Access Journal
issn 0013-5194
1350-911X
language English
last_indexed 2024-04-11T18:30:56Z
publishDate 2016-04-01
publisher Wiley
record_format Article
series Electronics Letters
spelling doaj.art-6944efb87ece4f1fa756d6a9d8152adb2022-12-22T04:09:27ZengWileyElectronics Letters0013-51941350-911X2016-04-0152970670810.1049/el.2015.3997(n, n(n‐1), n‐1) Permutation group codesLi Peng0School of Electronics Information and CommunicationsHuazhong University of Science and TechnologyWuhanPeople's Republic of ChinaTwo different subgroups Cn and Ln of symmetric group Sn are first designed and then to construct a family of permutation group codes Pn with code length n, minimum Hamming distance n − 1, cardinalityn(n − 1) and error‐correcting capability n − 2 is composited.https://doi.org/10.1049/el.2015.3997permutation group codescode lengthHamming distanceerror‐correcting capability
spellingShingle Li Peng
(n, n(n‐1), n‐1) Permutation group codes
Electronics Letters
permutation group codes
code length
Hamming distance
error‐correcting capability
title (n, n(n‐1), n‐1) Permutation group codes
title_full (n, n(n‐1), n‐1) Permutation group codes
title_fullStr (n, n(n‐1), n‐1) Permutation group codes
title_full_unstemmed (n, n(n‐1), n‐1) Permutation group codes
title_short (n, n(n‐1), n‐1) Permutation group codes
title_sort n n n 1 n 1 permutation group codes
topic permutation group codes
code length
Hamming distance
error‐correcting capability
url https://doi.org/10.1049/el.2015.3997
work_keys_str_mv AT lipeng nnn1n1permutationgroupcodes