Review of the Effect of Grinding Aids and Admixtures on the Performance of Cements

Grinding aids (GAs) are polar chemicals introduced in cement mills in either liquid or powder form to improve on mill grindability efficiency. Studies have shown that some GAs not only help in grinding efficiency but also play vital roles in improving the product particle size distribution, product...

Full description

Bibliographic Details
Main Authors: Eric Nthiga Njiru, Jackson Wachira Muthengia, Onesmus Mulwa Munyao, Daniel Karanja Mutitu, David Munyao Musyoki
Format: Article
Language:English
Published: Hindawi Limited 2023-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2023/6697842
Description
Summary:Grinding aids (GAs) are polar chemicals introduced in cement mills in either liquid or powder form to improve on mill grindability efficiency. Studies have shown that some GAs not only help in grinding efficiency but also play vital roles in improving the product particle size distribution, product ability to flow in the mill, grinding energy reduction, and improvement on the separator efficiency. This review investigated the impacts of the GAs on the performance of some properties of cement when used as either mortar and/or concrete. The influence of the GAs incorporation in cement grinding on properties such as workability and setting times of the placed concrete and/or mortar has been covered in this review. The performance of GAs on ordinary portland cement (OPC) and blended cements with other supplementary cementitious materials such as pozzolana, fly ash, and slag has also been discussed. This is in view to tapping the maximum benefits of using GAs in cement production and use. This review work established that GAs have a positive influence on mill performance when properly applied. It further established that blended cements work better when dosed with additives such as GAs and/or quality improvers when compared to OPC. The review work demonstrated that some superplasticizers help in lowering the water demand in highly blended pozzolanic-based cements. The review finally recommended that the future course of action in the production of blended cements should apply GAs. This is in order to help produce highly replaced blended cements that are sustainable.
ISSN:1687-8094