SCNN-Attack: A Side-Channel Attack to Identify YouTube Videos in a VPN and Non-VPN Network Traffic

Encryption Protocols e.g., HTTPS is utilized to secure the traffic between servers and clients for YouTube and other video streaming services, and to further secure the communication, VPNs are used. However, these protocols are not sufficient to hide the identity of the videos from someone who can s...

Full description

Bibliographic Details
Main Authors: Muhammad U. S. Khan, Syed M. A. H. Bukhari, Tahir Maqsood, Muhammad A. B. Fayyaz, Darren Dancey, Raheel Nawaz
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/11/3/350
Description
Summary:Encryption Protocols e.g., HTTPS is utilized to secure the traffic between servers and clients for YouTube and other video streaming services, and to further secure the communication, VPNs are used. However, these protocols are not sufficient to hide the identity of the videos from someone who can sniff the network traffic. The present work explores the methodologies and features to identify the videos in a VPN and non-VPN network traffic. To identify such videos, a side-channel attack using a Sequential Convolution Neural Network is proposed. The results demonstrate that a sequence of bytes per second from even one-minute sniffing of network traffic is sufficient to predict the video with high accuracy. The accuracy is increased to 90% accuracy in the non-VPN, 66% accuracy in the VPN, and 77% in the mixed VPN and non-VPN traffic, for models with two-minute sniffing.
ISSN:2079-9292