Bifurcation of positive solutions for a semilinear equation with critical Sobolev exponent

In this note we consider bifurcation of positive solutions to the semilinear elliptic boundary-value problem with critical Sobolev exponent $$displaylines{ -Delta u = lambda u - alpha u^p+ u^{2^*-1}, quad u >0 , quad hbox{in } Omega,cr u=0, quad hbox{on } partialOmega. }$$ where $Omega subset m...

Full description

Bibliographic Details
Main Author: Yuanji Cheng
Format: Article
Language:English
Published: Texas State University 2006-10-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2006/135/abstr.thml
_version_ 1811322917189844992
author Yuanji Cheng
author_facet Yuanji Cheng
author_sort Yuanji Cheng
collection DOAJ
description In this note we consider bifurcation of positive solutions to the semilinear elliptic boundary-value problem with critical Sobolev exponent $$displaylines{ -Delta u = lambda u - alpha u^p+ u^{2^*-1}, quad u >0 , quad hbox{in } Omega,cr u=0, quad hbox{on } partialOmega. }$$ where $Omega subset mathbb{R}^n$, $nge 3 $ is a bounded $C^2$-domain $lambda>lambda_1$, $1<p < 2^* -1= frac{n+2}{n-2} $ and $alpha >0$ is a bifurcation parameter. Brezis and Nirenberg [2] showed that a lower order (non-negative) perturbation can contribute to regain the compactness and whence yields existence of solutions. We study the equation with an indefinite perturbation and prove a bifurcation result of two solutions for this equation.
first_indexed 2024-04-13T13:44:44Z
format Article
id doaj.art-696d436dd70f44498ffb49d2813b34fe
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-04-13T13:44:44Z
publishDate 2006-10-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-696d436dd70f44498ffb49d2813b34fe2022-12-22T02:44:31ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912006-10-01200613518Bifurcation of positive solutions for a semilinear equation with critical Sobolev exponentYuanji ChengIn this note we consider bifurcation of positive solutions to the semilinear elliptic boundary-value problem with critical Sobolev exponent $$displaylines{ -Delta u = lambda u - alpha u^p+ u^{2^*-1}, quad u >0 , quad hbox{in } Omega,cr u=0, quad hbox{on } partialOmega. }$$ where $Omega subset mathbb{R}^n$, $nge 3 $ is a bounded $C^2$-domain $lambda>lambda_1$, $1<p < 2^* -1= frac{n+2}{n-2} $ and $alpha >0$ is a bifurcation parameter. Brezis and Nirenberg [2] showed that a lower order (non-negative) perturbation can contribute to regain the compactness and whence yields existence of solutions. We study the equation with an indefinite perturbation and prove a bifurcation result of two solutions for this equation.http://ejde.math.txstate.edu/Volumes/2006/135/abstr.thmlCritical Sobolev exponentpositive solutionsbifurcation.
spellingShingle Yuanji Cheng
Bifurcation of positive solutions for a semilinear equation with critical Sobolev exponent
Electronic Journal of Differential Equations
Critical Sobolev exponent
positive solutions
bifurcation.
title Bifurcation of positive solutions for a semilinear equation with critical Sobolev exponent
title_full Bifurcation of positive solutions for a semilinear equation with critical Sobolev exponent
title_fullStr Bifurcation of positive solutions for a semilinear equation with critical Sobolev exponent
title_full_unstemmed Bifurcation of positive solutions for a semilinear equation with critical Sobolev exponent
title_short Bifurcation of positive solutions for a semilinear equation with critical Sobolev exponent
title_sort bifurcation of positive solutions for a semilinear equation with critical sobolev exponent
topic Critical Sobolev exponent
positive solutions
bifurcation.
url http://ejde.math.txstate.edu/Volumes/2006/135/abstr.thml
work_keys_str_mv AT yuanjicheng bifurcationofpositivesolutionsforasemilinearequationwithcriticalsobolevexponent