Corrigendum: Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma

Bibliographic Details
Main Authors: Fangyi Xu, Wenchao Zhu, Yao Shen, Jian Wang, Rui Xu, Chooah Outesh, Lijiang Song, Yi Gan, Cailing Pu, Hongjie Hu
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-10-01
Series:Frontiers in Oncology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fonc.2020.608365/full
_version_ 1818509070059962368
author Fangyi Xu
Wenchao Zhu
Yao Shen
Yao Shen
Jian Wang
Rui Xu
Rui Xu
Chooah Outesh
Lijiang Song
Yi Gan
Cailing Pu
Hongjie Hu
author_facet Fangyi Xu
Wenchao Zhu
Yao Shen
Yao Shen
Jian Wang
Rui Xu
Rui Xu
Chooah Outesh
Lijiang Song
Yi Gan
Cailing Pu
Hongjie Hu
author_sort Fangyi Xu
collection DOAJ
first_indexed 2024-12-10T22:40:28Z
format Article
id doaj.art-69784bc997c44bba953e577546591656
institution Directory Open Access Journal
issn 2234-943X
language English
last_indexed 2024-12-10T22:40:28Z
publishDate 2020-10-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Oncology
spelling doaj.art-69784bc997c44bba953e5775465916562022-12-22T01:30:43ZengFrontiers Media S.A.Frontiers in Oncology2234-943X2020-10-011010.3389/fonc.2020.608365608365Corrigendum: Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung AdenocarcinomaFangyi Xu0Wenchao Zhu1Yao Shen2Yao Shen3Jian Wang4Rui Xu5Rui Xu6Chooah Outesh7Lijiang Song8Yi Gan9Cailing Pu10Hongjie Hu11Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, ChinaDepartment of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, ChinaDepartment of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, ChinaDepartment of Radiology, Yinzhou Hospital Affiliated With the School of Medicine of Ningbo University, Ningbo, ChinaDepartment of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, ChinaDUT-RU International School of Information Science & Engineering, Dalian University of Technology, Dalian, ChinaDUT-RU Co-Research Center of Advanced ICT for Active Life, Dalian, ChinaDepartment of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, ChinaDepartment of Cardiothoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, ChinaDepartment of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, ChinaDepartment of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, ChinaDepartment of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Chinahttps://www.frontiersin.org/articles/10.3389/fonc.2020.608365/fullradiomicslung canceradenocarcinomacomputed tomographymachine learning
spellingShingle Fangyi Xu
Wenchao Zhu
Yao Shen
Yao Shen
Jian Wang
Rui Xu
Rui Xu
Chooah Outesh
Lijiang Song
Yi Gan
Cailing Pu
Hongjie Hu
Corrigendum: Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma
Frontiers in Oncology
radiomics
lung cancer
adenocarcinoma
computed tomography
machine learning
title Corrigendum: Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma
title_full Corrigendum: Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma
title_fullStr Corrigendum: Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma
title_full_unstemmed Corrigendum: Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma
title_short Corrigendum: Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma
title_sort corrigendum radiomic based quantitative ct analysis of pure ground glass nodules to predict the invasiveness of lung adenocarcinoma
topic radiomics
lung cancer
adenocarcinoma
computed tomography
machine learning
url https://www.frontiersin.org/articles/10.3389/fonc.2020.608365/full
work_keys_str_mv AT fangyixu corrigendumradiomicbasedquantitativectanalysisofpuregroundglassnodulestopredicttheinvasivenessoflungadenocarcinoma
AT wenchaozhu corrigendumradiomicbasedquantitativectanalysisofpuregroundglassnodulestopredicttheinvasivenessoflungadenocarcinoma
AT yaoshen corrigendumradiomicbasedquantitativectanalysisofpuregroundglassnodulestopredicttheinvasivenessoflungadenocarcinoma
AT yaoshen corrigendumradiomicbasedquantitativectanalysisofpuregroundglassnodulestopredicttheinvasivenessoflungadenocarcinoma
AT jianwang corrigendumradiomicbasedquantitativectanalysisofpuregroundglassnodulestopredicttheinvasivenessoflungadenocarcinoma
AT ruixu corrigendumradiomicbasedquantitativectanalysisofpuregroundglassnodulestopredicttheinvasivenessoflungadenocarcinoma
AT ruixu corrigendumradiomicbasedquantitativectanalysisofpuregroundglassnodulestopredicttheinvasivenessoflungadenocarcinoma
AT chooahoutesh corrigendumradiomicbasedquantitativectanalysisofpuregroundglassnodulestopredicttheinvasivenessoflungadenocarcinoma
AT lijiangsong corrigendumradiomicbasedquantitativectanalysisofpuregroundglassnodulestopredicttheinvasivenessoflungadenocarcinoma
AT yigan corrigendumradiomicbasedquantitativectanalysisofpuregroundglassnodulestopredicttheinvasivenessoflungadenocarcinoma
AT cailingpu corrigendumradiomicbasedquantitativectanalysisofpuregroundglassnodulestopredicttheinvasivenessoflungadenocarcinoma
AT hongjiehu corrigendumradiomicbasedquantitativectanalysisofpuregroundglassnodulestopredicttheinvasivenessoflungadenocarcinoma