Collectivity and manifestations of minimum-bias jets in high-energy nuclear collisions

Collectivity, as interpreted to mean flow of a dense medium in high-energy A-A collisions described by hydrodynamics, has been attributed to smaller collision systems – p-A and even p-p collisions – based on recent analysis of LHC data. However, alternative methods reveal that some data features att...

Full description

Bibliographic Details
Main Author: A. Trainor Thomas
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:EPJ Web of Conferences
Online Access:https://doi.org/10.1051/epjconf/201817205004
Description
Summary:Collectivity, as interpreted to mean flow of a dense medium in high-energy A-A collisions described by hydrodynamics, has been attributed to smaller collision systems – p-A and even p-p collisions – based on recent analysis of LHC data. However, alternative methods reveal that some data features attributed to flows are actually manifestations of minimum-bias (MB) jets. In this presentation I review the differential structure of single-particle pt spectra from SPS to LHC energies in the context of a two-component (soft + hard) model (TCM) of hadron production. I relate the spectrum hard component to measured properties of isolated jets. I use the spectrum TCM to predict accurately the systematics of ensemble-mean p̅t in p-p, p-A and A-A collision systems over a large energy interval. Detailed comparisons of the TCM with spectrum and correlation data suggest that MB jets play a dominant role in hadron production near midrapidity. Claimed flow phenomena are better explained as jet manifestations agreeing quantitatively with measured jet properties.
ISSN:2100-014X