Next-Generation Reconfigurable Nanoantennas and Polarization of Light

This study is aimed at the design, calibration, and development of a near-infrared (NIR) liquid crystal multifunctional automated optical polarimeter, which is aimed at the study and characterization of the polarimetric properties of polymer optical nanofilms. The characterization of these novel nan...

Full description

Bibliographic Details
Main Authors: Tannaz Farrahi, George K. Giakos
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/14/6/1132
Description
Summary:This study is aimed at the design, calibration, and development of a near-infrared (NIR) liquid crystal multifunctional automated optical polarimeter, which is aimed at the study and characterization of the polarimetric properties of polymer optical nanofilms. The characterization of these novel nanophotonic structures has been achieved, in terms of Mueller matrix and Stokes parameter analyses. The nanophotonic structures of this study consisted of (a) a matrix consisting of two different polymer domains, namely polybutadiene (PB) and polystyrene (PS), functionalized with gold nanoparticles; (b) cast and annealed Poly (styrene-b-methyl methacrylate) (PS-PMMA) diblock copolymers; (c) a matrix of a block copolymer (BCP) domain, PS-b-PMMA or Poly (styrene-block-methy methacrylate), functionalized with gold nanoparticles; and (d) different thicknesses of PS-b-P2VP diblock copolymer functionalized with gold nanoparticles. In all cases, backscattered infrared light was studied and related to the polarization figures-of-merit (FOM). The outcome of this study indicates that functionalized polymer nanomaterials, depending upon their structure and composition, exhibit promising optical characteristics, modulating and manipulating the polarimetric properties of light. The fabrication of technologically useful, tunable, conjugated polymer blends with an optimized refractive index, shape, size, spatial orientation, and arrangement would lead to the development of new nanoantennas and metasurfaces.
ISSN:2072-666X