Interactions Obtained from Basic Mechanistic Principles: Prey Herds and Predators

We investigate four predator–prey Rosenzweig–MacArthur models in which the prey exhibit herd behaviour and only the individuals on the edge of the herd are subjected to the predators’ attacks. The key concept is the herding index, i.e., the parameter defining the characteristic shape of the herd. We...

Full description

Bibliographic Details
Main Authors: Cecilia Berardo, Iulia Martina Bulai, Ezio Venturino
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/20/2555
Description
Summary:We investigate four predator–prey Rosenzweig–MacArthur models in which the prey exhibit herd behaviour and only the individuals on the edge of the herd are subjected to the predators’ attacks. The key concept is the herding index, i.e., the parameter defining the characteristic shape of the herd. We derive the population equations from the individual state transitions using the mechanistic approach and time scale separation method. We consider one predator and one prey species, linear and hyperbolic responses and the occurrence of predators’ intraspecific competition. For all models, we study the equilibria and their stability and we give the bifurcation analysis. We use standard numerical methods and the software Xppaut to obtain the one-parameter and two-parameter bifurcation diagrams.
ISSN:2227-7390