Localization of Integrin Beta-4 Subunit at Soft Tissue–Titanium or Zirconia Interface

Currently, along with titanium (Ti), zirconia is widely used as an abutment material for dental implants because it makes it possible to avoid gingival discoloration; however, the epithelial sealing capability of zirconia remains unknown. The purpose of the present study is to elucidate the localiza...

Full description

Bibliographic Details
Main Authors: Yasunori Ayukawa, Ikiru Atsuta, Yasuko Moriyama, Yohei Jinno, Kiyoshi Koyano
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Journal of Clinical Medicine
Subjects:
Online Access:https://www.mdpi.com/2077-0383/9/10/3331
Description
Summary:Currently, along with titanium (Ti), zirconia is widely used as an abutment material for dental implants because it makes it possible to avoid gingival discoloration; however, the epithelial sealing capability of zirconia remains unknown. The purpose of the present study is to elucidate the localization of integrin β4 subunit (Inβ4), one of the main proteins in the attachment structure between gingival junctional epithelial (JE) cells and substrata. Maxillary first molars were extracted from rats, and implants were placed with Ti or zirconia transgingival parts; then, the localization of Inβ4 was observed. Morphological and functional changes in rat oral epithelial cells (OECs) cultured on a culture dish (Dish) and Ti and zirconia plates were also evaluated with Inβ4 immunofluorescence histochemistry and Western blotting. After four weeks of implant placement, the morphology of the peri-implant epithelium (PIE) and the localization of Inβ4 around the Ti and zirconia transgingival parts were similar. However, both exhibited markedly shorter Inβ4-positive bands in the PIE than in the JE around natural teeth. Decreased expression levels of Inβ4 were observed in OECs cultured on Ti and zirconia plates compared with those cultured on Dish. In conclusion, although inferior to natural teeth, zirconia implants are thought to have epithelial sealing properties comparable to those of titanium.
ISSN:2077-0383