An efficient and regioselective biocatalytic synthesis of aromatic N‐oxides by using a soluble di‐iron monooxygenase PmlABCDEF produced in the Pseudomonas species

Summary Here, we present an improved whole‐cell biocatalysis system for the synthesis of heteroaromatic N‐oxides based on the production of a soluble di‐iron monooxygenase PmlABCDEF in Pseudomonas sp. MIL9 and Pseudomonas putida KT2440. The presented biocatalysis system performs under environmentall...

Full description

Bibliographic Details
Main Authors: Vytautas Petkevičius, Justas Vaitekūnas, Renata Gasparavičiūtė, Daiva Tauraitė, Rolandas Meškys
Format: Article
Language:English
Published: Wiley 2021-07-01
Series:Microbial Biotechnology
Online Access:https://doi.org/10.1111/1751-7915.13849
_version_ 1819199236158259200
author Vytautas Petkevičius
Justas Vaitekūnas
Renata Gasparavičiūtė
Daiva Tauraitė
Rolandas Meškys
author_facet Vytautas Petkevičius
Justas Vaitekūnas
Renata Gasparavičiūtė
Daiva Tauraitė
Rolandas Meškys
author_sort Vytautas Petkevičius
collection DOAJ
description Summary Here, we present an improved whole‐cell biocatalysis system for the synthesis of heteroaromatic N‐oxides based on the production of a soluble di‐iron monooxygenase PmlABCDEF in Pseudomonas sp. MIL9 and Pseudomonas putida KT2440. The presented biocatalysis system performs under environmentally benign conditions, features a straightforward and inexpensive procedure and possesses a high substrate conversion and product yield. The capacity of gram‐scale production was reached in the simple shake‐flask cultivation. The template substrates (pyridine, pyrazine, 2‐aminopyrimidine) have been converted into pyridine‐1‐oxide, pyrazine‐1‐oxide and 2‐aminopyrimidine‐1‐oxide in product titres of 18.0, 19.1 and 18.3 g l‐1, respectively. To our knowledge, this is the highest reported productivity of aromatic N‐oxides using biocatalysis methods. Moreover, comparing to the chemical method of aromatic N‐oxides synthesis based on meta‐chloroperoxybenzoic acid, the developed approach is applicable for a regioselective oxidation that is an additional advantageous option in the preparation of the anticipated N‐oxides.
first_indexed 2024-12-23T03:13:07Z
format Article
id doaj.art-69c5c81e7c6a4935988ee2ac010b407c
institution Directory Open Access Journal
issn 1751-7915
language English
last_indexed 2024-12-23T03:13:07Z
publishDate 2021-07-01
publisher Wiley
record_format Article
series Microbial Biotechnology
spelling doaj.art-69c5c81e7c6a4935988ee2ac010b407c2022-12-21T18:02:13ZengWileyMicrobial Biotechnology1751-79152021-07-011441771178310.1111/1751-7915.13849An efficient and regioselective biocatalytic synthesis of aromatic N‐oxides by using a soluble di‐iron monooxygenase PmlABCDEF produced in the Pseudomonas speciesVytautas Petkevičius0Justas Vaitekūnas1Renata Gasparavičiūtė2Daiva Tauraitė3Rolandas Meškys4Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Saulėtekio 7 Vilnius LT‐10257 LithuaniaDepartment of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Saulėtekio 7 Vilnius LT‐10257 LithuaniaDepartment of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Saulėtekio 7 Vilnius LT‐10257 LithuaniaDepartment of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Saulėtekio 7 Vilnius LT‐10257 LithuaniaDepartment of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Saulėtekio 7 Vilnius LT‐10257 LithuaniaSummary Here, we present an improved whole‐cell biocatalysis system for the synthesis of heteroaromatic N‐oxides based on the production of a soluble di‐iron monooxygenase PmlABCDEF in Pseudomonas sp. MIL9 and Pseudomonas putida KT2440. The presented biocatalysis system performs under environmentally benign conditions, features a straightforward and inexpensive procedure and possesses a high substrate conversion and product yield. The capacity of gram‐scale production was reached in the simple shake‐flask cultivation. The template substrates (pyridine, pyrazine, 2‐aminopyrimidine) have been converted into pyridine‐1‐oxide, pyrazine‐1‐oxide and 2‐aminopyrimidine‐1‐oxide in product titres of 18.0, 19.1 and 18.3 g l‐1, respectively. To our knowledge, this is the highest reported productivity of aromatic N‐oxides using biocatalysis methods. Moreover, comparing to the chemical method of aromatic N‐oxides synthesis based on meta‐chloroperoxybenzoic acid, the developed approach is applicable for a regioselective oxidation that is an additional advantageous option in the preparation of the anticipated N‐oxides.https://doi.org/10.1111/1751-7915.13849
spellingShingle Vytautas Petkevičius
Justas Vaitekūnas
Renata Gasparavičiūtė
Daiva Tauraitė
Rolandas Meškys
An efficient and regioselective biocatalytic synthesis of aromatic N‐oxides by using a soluble di‐iron monooxygenase PmlABCDEF produced in the Pseudomonas species
Microbial Biotechnology
title An efficient and regioselective biocatalytic synthesis of aromatic N‐oxides by using a soluble di‐iron monooxygenase PmlABCDEF produced in the Pseudomonas species
title_full An efficient and regioselective biocatalytic synthesis of aromatic N‐oxides by using a soluble di‐iron monooxygenase PmlABCDEF produced in the Pseudomonas species
title_fullStr An efficient and regioselective biocatalytic synthesis of aromatic N‐oxides by using a soluble di‐iron monooxygenase PmlABCDEF produced in the Pseudomonas species
title_full_unstemmed An efficient and regioselective biocatalytic synthesis of aromatic N‐oxides by using a soluble di‐iron monooxygenase PmlABCDEF produced in the Pseudomonas species
title_short An efficient and regioselective biocatalytic synthesis of aromatic N‐oxides by using a soluble di‐iron monooxygenase PmlABCDEF produced in the Pseudomonas species
title_sort efficient and regioselective biocatalytic synthesis of aromatic n oxides by using a soluble di iron monooxygenase pmlabcdef produced in the pseudomonas species
url https://doi.org/10.1111/1751-7915.13849
work_keys_str_mv AT vytautaspetkevicius anefficientandregioselectivebiocatalyticsynthesisofaromaticnoxidesbyusingasolublediironmonooxygenasepmlabcdefproducedinthepseudomonasspecies
AT justasvaitekunas anefficientandregioselectivebiocatalyticsynthesisofaromaticnoxidesbyusingasolublediironmonooxygenasepmlabcdefproducedinthepseudomonasspecies
AT renatagasparaviciute anefficientandregioselectivebiocatalyticsynthesisofaromaticnoxidesbyusingasolublediironmonooxygenasepmlabcdefproducedinthepseudomonasspecies
AT daivatauraite anefficientandregioselectivebiocatalyticsynthesisofaromaticnoxidesbyusingasolublediironmonooxygenasepmlabcdefproducedinthepseudomonasspecies
AT rolandasmeskys anefficientandregioselectivebiocatalyticsynthesisofaromaticnoxidesbyusingasolublediironmonooxygenasepmlabcdefproducedinthepseudomonasspecies
AT vytautaspetkevicius efficientandregioselectivebiocatalyticsynthesisofaromaticnoxidesbyusingasolublediironmonooxygenasepmlabcdefproducedinthepseudomonasspecies
AT justasvaitekunas efficientandregioselectivebiocatalyticsynthesisofaromaticnoxidesbyusingasolublediironmonooxygenasepmlabcdefproducedinthepseudomonasspecies
AT renatagasparaviciute efficientandregioselectivebiocatalyticsynthesisofaromaticnoxidesbyusingasolublediironmonooxygenasepmlabcdefproducedinthepseudomonasspecies
AT daivatauraite efficientandregioselectivebiocatalyticsynthesisofaromaticnoxidesbyusingasolublediironmonooxygenasepmlabcdefproducedinthepseudomonasspecies
AT rolandasmeskys efficientandregioselectivebiocatalyticsynthesisofaromaticnoxidesbyusingasolublediironmonooxygenasepmlabcdefproducedinthepseudomonasspecies