NH<sub>3</sub> Sensor Based on ZIF-8/CNT Operating at Room Temperature with Immunity to Humidity

Humidity effects on resistive gas sensors operating at room temperature remain a serious bottleneck. In this work, we introduce a resistive gas sensor based on a zeolitic imidazolate framework-8/carbon nanotube (ZIF-8/CNT) composite for the detection of ammonia gas at room temperature. The composite...

Full description

Bibliographic Details
Main Authors: Wenjun Yan, Shiyu Zhou, Min Ling, XinSheng Peng, Houpan Zhou
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Inorganics
Subjects:
Online Access:https://www.mdpi.com/2304-6740/10/11/193
Description
Summary:Humidity effects on resistive gas sensors operating at room temperature remain a serious bottleneck. In this work, we introduce a resistive gas sensor based on a zeolitic imidazolate framework-8/carbon nanotube (ZIF-8/CNT) composite for the detection of ammonia gas at room temperature. The composite was prepared using a facile solution method. In this sensor, the basic mechanism was the charge transfer between ammonia molecules and CNTs; meanwhile, the ZIF-8 facilitated the adsorption of ammonia molecules as a preconcentrator, and prevented the adsorption of H<sub>2</sub>O molecules due to its hydrophobicity; CNTs were threaded through the ZIF-8 to form a great conductive network for charge transfer. The obtained sensor showed good ammonia sensing, especially at room temperature, with great selectivity and immunity to humidity under moderately humid conditions (45–70 % RH). However, the ammonia response was reduced at very high humidity (90% RH) due to the competitive adsorption of H<sub>2</sub>O molecules. This proved that the NH<sub>3</sub> sensor based on ZIF-8/CNT could be suitable for practical applications under moderately humid conditions.
ISSN:2304-6740