Summary: | Ultrasonic spot welding using different welding conditions was applied to join dissimilar metals of galvanized DP590 steel and AZ31B magnesium sheets. In situ high-speed imaging, digital image correlation, and infrared thermography were utilized to quantitatively study the interfacial relative motion, surface indentation, and heat generation across the joint faying interface and the sheet/sonotrode interfaces under the welding condition of moderate welding power and short welding time. For welds made with high power and long welding time, lap shear tensile tests as well as fatigue tests were carried out. Different fracture modes were observed after the lap shear tensile tests and fatigue tests performed under different peak loads. Post-weld cross-sectional analysis with scanning electron microscopy coupled with energy dispersive X-Ray spectroscopy revealed the variation of morphology and chemical composition at the joint interface for welds made with different welding conditions.
|