Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution
Abstract Background Macrolactins, a type of macrolide antibiotic, are toxic to the producer strains. As such, its level is usually maintained below the lethal concentration during the fermentation process. To improve the production of macrolactins, we applied adaptive laboratory evolution technology...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2022-07-01
|
Series: | Microbial Cell Factories |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12934-022-01871-9 |
_version_ | 1828260239875506176 |
---|---|
author | Yuman Gan Meng Bai Xiao Lin Kai Liu Bingyao Huang Xiaodong Jiang Yonghong Liu Chenghai Gao |
author_facet | Yuman Gan Meng Bai Xiao Lin Kai Liu Bingyao Huang Xiaodong Jiang Yonghong Liu Chenghai Gao |
author_sort | Yuman Gan |
collection | DOAJ |
description | Abstract Background Macrolactins, a type of macrolide antibiotic, are toxic to the producer strains. As such, its level is usually maintained below the lethal concentration during the fermentation process. To improve the production of macrolactins, we applied adaptive laboratory evolution technology to engineer a saline-resistant mutant strain. The hypothesis that strains with saline resistance show improved macrolactins production was investigated. Results Using saline stress as a selective pressure, we engineered a mutant strain with saline resistance coupled with enhanced macrolactins production within 60 days using a self-made device. As compared with the parental strain, the evolved strain produced macrolactins with 11.93% improvement in non-saline stress fermentation medium containing 50 g/L glucose, when the glucose concentration increased to 70 g/L, the evolved strain produced macrolactins with 71.04% improvement. RNA sequencing and metabolomics results revealed that amino acid metabolism was involved in the production of macrolactins in the evolved strain. Furthermore, genome sequencing of the evolved strain revealed a candidate mutation, hisD D41Y, that was causal for the improved MLNs production, it was 3.42 times higher than the control in the overexpression hisD D41Y strain. Results revealed that saline resistance protected the producer strain from feedback inhibition of end-product (macrolide antibiotic), resulting in enhanced MLNs production. Conclusions In the present work, we successfully engineered a mutant strain with enhanced macrolactins production by adaptive laboratory evolution using saline stress as a selective pressure. Based on physiological, transcriptomic and genetic analysis, amino acid metabolism was found to benefit macrolactins production improvement. Our strategy might be applicable to improve the production of other kinds of macrolide antibiotics and other toxic compounds. The identification of the hisD mutation will allow for the deduction of metabolic engineering strategies in future research. |
first_indexed | 2024-04-13T03:20:30Z |
format | Article |
id | doaj.art-69e8729a2b364e328fc08196252d47a1 |
institution | Directory Open Access Journal |
issn | 1475-2859 |
language | English |
last_indexed | 2024-04-13T03:20:30Z |
publishDate | 2022-07-01 |
publisher | BMC |
record_format | Article |
series | Microbial Cell Factories |
spelling | doaj.art-69e8729a2b364e328fc08196252d47a12022-12-22T03:04:47ZengBMCMicrobial Cell Factories1475-28592022-07-0121111510.1186/s12934-022-01871-9Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolutionYuman Gan0Meng Bai1Xiao Lin2Kai Liu3Bingyao Huang4Xiaodong Jiang5Yonghong Liu6Chenghai Gao7Institute of Marine Drugs, Guangxi University of Chinese MedicineInstitute of Marine Drugs, Guangxi University of Chinese MedicineInstitute of Marine Drugs, Guangxi University of Chinese MedicineInstitute of Marine Drugs, Guangxi University of Chinese MedicineInstitute of Marine Drugs, Guangxi University of Chinese MedicineInstitute of Marine Drugs, Guangxi University of Chinese MedicineInstitute of Marine Drugs, Guangxi University of Chinese MedicineInstitute of Marine Drugs, Guangxi University of Chinese MedicineAbstract Background Macrolactins, a type of macrolide antibiotic, are toxic to the producer strains. As such, its level is usually maintained below the lethal concentration during the fermentation process. To improve the production of macrolactins, we applied adaptive laboratory evolution technology to engineer a saline-resistant mutant strain. The hypothesis that strains with saline resistance show improved macrolactins production was investigated. Results Using saline stress as a selective pressure, we engineered a mutant strain with saline resistance coupled with enhanced macrolactins production within 60 days using a self-made device. As compared with the parental strain, the evolved strain produced macrolactins with 11.93% improvement in non-saline stress fermentation medium containing 50 g/L glucose, when the glucose concentration increased to 70 g/L, the evolved strain produced macrolactins with 71.04% improvement. RNA sequencing and metabolomics results revealed that amino acid metabolism was involved in the production of macrolactins in the evolved strain. Furthermore, genome sequencing of the evolved strain revealed a candidate mutation, hisD D41Y, that was causal for the improved MLNs production, it was 3.42 times higher than the control in the overexpression hisD D41Y strain. Results revealed that saline resistance protected the producer strain from feedback inhibition of end-product (macrolide antibiotic), resulting in enhanced MLNs production. Conclusions In the present work, we successfully engineered a mutant strain with enhanced macrolactins production by adaptive laboratory evolution using saline stress as a selective pressure. Based on physiological, transcriptomic and genetic analysis, amino acid metabolism was found to benefit macrolactins production improvement. Our strategy might be applicable to improve the production of other kinds of macrolide antibiotics and other toxic compounds. The identification of the hisD mutation will allow for the deduction of metabolic engineering strategies in future research.https://doi.org/10.1186/s12934-022-01871-9MacrolactinsAdaptive laboratory evolutionSaline toleranceAmino acid metabolismFeedback inhibition |
spellingShingle | Yuman Gan Meng Bai Xiao Lin Kai Liu Bingyao Huang Xiaodong Jiang Yonghong Liu Chenghai Gao Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution Microbial Cell Factories Macrolactins Adaptive laboratory evolution Saline tolerance Amino acid metabolism Feedback inhibition |
title | Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution |
title_full | Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution |
title_fullStr | Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution |
title_full_unstemmed | Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution |
title_short | Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution |
title_sort | improvement of macrolactins production by the genetic adaptation of bacillus siamensis a72 to saline stress via adaptive laboratory evolution |
topic | Macrolactins Adaptive laboratory evolution Saline tolerance Amino acid metabolism Feedback inhibition |
url | https://doi.org/10.1186/s12934-022-01871-9 |
work_keys_str_mv | AT yumangan improvementofmacrolactinsproductionbythegeneticadaptationofbacillussiamensisa72tosalinestressviaadaptivelaboratoryevolution AT mengbai improvementofmacrolactinsproductionbythegeneticadaptationofbacillussiamensisa72tosalinestressviaadaptivelaboratoryevolution AT xiaolin improvementofmacrolactinsproductionbythegeneticadaptationofbacillussiamensisa72tosalinestressviaadaptivelaboratoryevolution AT kailiu improvementofmacrolactinsproductionbythegeneticadaptationofbacillussiamensisa72tosalinestressviaadaptivelaboratoryevolution AT bingyaohuang improvementofmacrolactinsproductionbythegeneticadaptationofbacillussiamensisa72tosalinestressviaadaptivelaboratoryevolution AT xiaodongjiang improvementofmacrolactinsproductionbythegeneticadaptationofbacillussiamensisa72tosalinestressviaadaptivelaboratoryevolution AT yonghongliu improvementofmacrolactinsproductionbythegeneticadaptationofbacillussiamensisa72tosalinestressviaadaptivelaboratoryevolution AT chenghaigao improvementofmacrolactinsproductionbythegeneticadaptationofbacillussiamensisa72tosalinestressviaadaptivelaboratoryevolution |