Performance of 3Y-TZP bioceramics under cyclic fatigue loading

In this work, the static mechanical properties and cyclic fatigue life of 3 mol. (%) Y2O3-stabilized tetragonal zirconia polycrystalline (3Y-TZP) ceramics were investigated. Pre-sintered samples were sintered in air at 1600 °C for 120 minutes, and characterized by X ray diffraction and scann...

Full description

Bibliographic Details
Main Authors: Renato Chaves Souza, Claudinei dos Santos, Miguel Justino Ribeiro Barboza, Carlos Antonio Reis Pereira Baptista, Kurt Strecker, Carlos Nelson Elias
Format: Article
Language:English
Published: Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol) 2008-03-01
Series:Materials Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392008000100017
Description
Summary:In this work, the static mechanical properties and cyclic fatigue life of 3 mol. (%) Y2O3-stabilized tetragonal zirconia polycrystalline (3Y-TZP) ceramics were investigated. Pre-sintered samples were sintered in air at 1600 °C for 120 minutes, and characterized by X ray diffraction and scanning electronic microscopy. Hardness and fracture toughness were determined by Vicker's indentation method, and Modulus of Rupture was determined by four-point bending testing. Fully dense sintered samples, near to 100% of theoretical density, presented hardness, fracture toughness and bending strength of 13.5 GPa, 8.2 MPa.m½ and 880 MPa, respectively. The cyclic fatigue tests were also realized using four-point bending testing, within a frequency of 25 Hz and stress ratio R of 0.1. The increasing of load stress lead to decreasing of the number of cycles and the run-out specimens number. The tetragonal-monoclinic (t-m) ZrO2-transformation observed by X ray diffraction contributes to the increasing of the fatigue life. The 3Y-TZP samples clearly presents a range of loading conditions where cyclic fatigue can be detected.
ISSN:1516-1439