Minimal length, nuclear matter, and neutron stars

Abstract In this paper, we employ one variant of the Generalized Uncertainty Principle (GUP) model, i.e., the Kempf–Mangano–Mann (KMM) model, and discuss the impact of GUP on the EoS of nuclear and neutron star matter based on the relativistic mean field (RMF) model. We input the result in the Serra...

Full description

Bibliographic Details
Main Authors: I. Prasetyo, I. H. Belfaqih, A. B. Wahidin, A. Suroso, A. Sulaksono
Format: Article
Language:English
Published: SpringerOpen 2022-10-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-022-10849-1
_version_ 1817979593496199168
author I. Prasetyo
I. H. Belfaqih
A. B. Wahidin
A. Suroso
A. Sulaksono
author_facet I. Prasetyo
I. H. Belfaqih
A. B. Wahidin
A. Suroso
A. Sulaksono
author_sort I. Prasetyo
collection DOAJ
description Abstract In this paper, we employ one variant of the Generalized Uncertainty Principle (GUP) model, i.e., the Kempf–Mangano–Mann (KMM) model, and discuss the impact of GUP on the EoS of nuclear and neutron star matter based on the relativistic mean field (RMF) model. We input the result in the Serrano–Liška (SL) gravity theory to discuss the corresponding Neutron Star (NS) properties. We have shown that the upper bound for the GUP parameter from nuclear matter properties is $$\beta \le 2\times 10^{-7}$$ β ≤ 2 × 10 - 7 MeV $$^{-2}$$ - 2 . If we used this $$\beta $$ β upper bound to calculate NS matter, and considering SL parameter $${\tilde{c}}$$ c ~ as an independent parameter, we have found that the upper bound for the SL parameter, which modifies the Einstein field equation, is $${\tilde{c}} \le 10^7$$ c ~ ≤ 10 7 m $$^2$$ 2 . This beta upper bound is determined by considering the anisotropy magnitude smaller than the pressure magnitude. By employing $$\beta =2\times 10^{-7}$$ β = 2 × 10 - 7 MeV $$^{-2}$$ - 2 and $${\tilde{c}} = 10^7$$ c ~ = 10 7 m $$^2$$ 2 , we obtain the mass–radius relation that satisfies NICER data for both PSR J0740+6620 (whose mass is $$\sim 2.1M_\odot $$ ∼ 2.1 M ⊙ ) and PSR J0030+0451 ( $$M\sim 1.4M_\odot $$ M ∼ 1.4 M ⊙ ). Our GUP parameter upper bound perfectly matches the constraint from $$^{87}$$ 87 Rb cold-atom-recoil experiment. If we consider that the same strength from the additional logarithmic term in the entropy from both GUP and SL model are dependent, for $$\beta < 2\times 10^{-7}$$ β < 2 × 10 - 7 MeV $$^{-2}$$ - 2 , it is clear that SL parameter lower bound is $${\tilde{c}} > -16\times 10^{-34}$$ c ~ > - 16 × 10 - 34 m $$^2$$ 2 . The magnitude of this bound is $$10^{-40}$$ 10 - 40 smaller than the upper bound magnitude of SL parameter considering as independent parameter i.e., $${\tilde{c}} \le 10^7$$ c ~ ≤ 10 7 m $$^2$$ 2 .
first_indexed 2024-04-13T22:44:39Z
format Article
id doaj.art-6a003b45a9e64717a80f6c3c57f31024
institution Directory Open Access Journal
issn 1434-6052
language English
last_indexed 2024-04-13T22:44:39Z
publishDate 2022-10-01
publisher SpringerOpen
record_format Article
series European Physical Journal C: Particles and Fields
spelling doaj.art-6a003b45a9e64717a80f6c3c57f310242022-12-22T02:26:27ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60522022-10-01821011310.1140/epjc/s10052-022-10849-1Minimal length, nuclear matter, and neutron starsI. Prasetyo0I. H. Belfaqih1A. B. Wahidin2A. Suroso3A. Sulaksono4Department of General Education, Faculty of Art and Sciences, Sampoerna UniversityDepartment of General Education, Faculty of Art and Sciences, Sampoerna UniversityProdi Sains Atmosfer dan Keplanetan, Jurusan Sains Institut Teknologi SumateraTheoretical High Energy Physics Research Division, Institut Teknologi BandungDepartemen Fisika FMIPA Universitas IndonesiaAbstract In this paper, we employ one variant of the Generalized Uncertainty Principle (GUP) model, i.e., the Kempf–Mangano–Mann (KMM) model, and discuss the impact of GUP on the EoS of nuclear and neutron star matter based on the relativistic mean field (RMF) model. We input the result in the Serrano–Liška (SL) gravity theory to discuss the corresponding Neutron Star (NS) properties. We have shown that the upper bound for the GUP parameter from nuclear matter properties is $$\beta \le 2\times 10^{-7}$$ β ≤ 2 × 10 - 7 MeV $$^{-2}$$ - 2 . If we used this $$\beta $$ β upper bound to calculate NS matter, and considering SL parameter $${\tilde{c}}$$ c ~ as an independent parameter, we have found that the upper bound for the SL parameter, which modifies the Einstein field equation, is $${\tilde{c}} \le 10^7$$ c ~ ≤ 10 7 m $$^2$$ 2 . This beta upper bound is determined by considering the anisotropy magnitude smaller than the pressure magnitude. By employing $$\beta =2\times 10^{-7}$$ β = 2 × 10 - 7 MeV $$^{-2}$$ - 2 and $${\tilde{c}} = 10^7$$ c ~ = 10 7 m $$^2$$ 2 , we obtain the mass–radius relation that satisfies NICER data for both PSR J0740+6620 (whose mass is $$\sim 2.1M_\odot $$ ∼ 2.1 M ⊙ ) and PSR J0030+0451 ( $$M\sim 1.4M_\odot $$ M ∼ 1.4 M ⊙ ). Our GUP parameter upper bound perfectly matches the constraint from $$^{87}$$ 87 Rb cold-atom-recoil experiment. If we consider that the same strength from the additional logarithmic term in the entropy from both GUP and SL model are dependent, for $$\beta < 2\times 10^{-7}$$ β < 2 × 10 - 7 MeV $$^{-2}$$ - 2 , it is clear that SL parameter lower bound is $${\tilde{c}} > -16\times 10^{-34}$$ c ~ > - 16 × 10 - 34 m $$^2$$ 2 . The magnitude of this bound is $$10^{-40}$$ 10 - 40 smaller than the upper bound magnitude of SL parameter considering as independent parameter i.e., $${\tilde{c}} \le 10^7$$ c ~ ≤ 10 7 m $$^2$$ 2 .https://doi.org/10.1140/epjc/s10052-022-10849-1
spellingShingle I. Prasetyo
I. H. Belfaqih
A. B. Wahidin
A. Suroso
A. Sulaksono
Minimal length, nuclear matter, and neutron stars
European Physical Journal C: Particles and Fields
title Minimal length, nuclear matter, and neutron stars
title_full Minimal length, nuclear matter, and neutron stars
title_fullStr Minimal length, nuclear matter, and neutron stars
title_full_unstemmed Minimal length, nuclear matter, and neutron stars
title_short Minimal length, nuclear matter, and neutron stars
title_sort minimal length nuclear matter and neutron stars
url https://doi.org/10.1140/epjc/s10052-022-10849-1
work_keys_str_mv AT iprasetyo minimallengthnuclearmatterandneutronstars
AT ihbelfaqih minimallengthnuclearmatterandneutronstars
AT abwahidin minimallengthnuclearmatterandneutronstars
AT asuroso minimallengthnuclearmatterandneutronstars
AT asulaksono minimallengthnuclearmatterandneutronstars