Minimal length, nuclear matter, and neutron stars
Abstract In this paper, we employ one variant of the Generalized Uncertainty Principle (GUP) model, i.e., the Kempf–Mangano–Mann (KMM) model, and discuss the impact of GUP on the EoS of nuclear and neutron star matter based on the relativistic mean field (RMF) model. We input the result in the Serra...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2022-10-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | https://doi.org/10.1140/epjc/s10052-022-10849-1 |
_version_ | 1817979593496199168 |
---|---|
author | I. Prasetyo I. H. Belfaqih A. B. Wahidin A. Suroso A. Sulaksono |
author_facet | I. Prasetyo I. H. Belfaqih A. B. Wahidin A. Suroso A. Sulaksono |
author_sort | I. Prasetyo |
collection | DOAJ |
description | Abstract In this paper, we employ one variant of the Generalized Uncertainty Principle (GUP) model, i.e., the Kempf–Mangano–Mann (KMM) model, and discuss the impact of GUP on the EoS of nuclear and neutron star matter based on the relativistic mean field (RMF) model. We input the result in the Serrano–Liška (SL) gravity theory to discuss the corresponding Neutron Star (NS) properties. We have shown that the upper bound for the GUP parameter from nuclear matter properties is $$\beta \le 2\times 10^{-7}$$ β ≤ 2 × 10 - 7 MeV $$^{-2}$$ - 2 . If we used this $$\beta $$ β upper bound to calculate NS matter, and considering SL parameter $${\tilde{c}}$$ c ~ as an independent parameter, we have found that the upper bound for the SL parameter, which modifies the Einstein field equation, is $${\tilde{c}} \le 10^7$$ c ~ ≤ 10 7 m $$^2$$ 2 . This beta upper bound is determined by considering the anisotropy magnitude smaller than the pressure magnitude. By employing $$\beta =2\times 10^{-7}$$ β = 2 × 10 - 7 MeV $$^{-2}$$ - 2 and $${\tilde{c}} = 10^7$$ c ~ = 10 7 m $$^2$$ 2 , we obtain the mass–radius relation that satisfies NICER data for both PSR J0740+6620 (whose mass is $$\sim 2.1M_\odot $$ ∼ 2.1 M ⊙ ) and PSR J0030+0451 ( $$M\sim 1.4M_\odot $$ M ∼ 1.4 M ⊙ ). Our GUP parameter upper bound perfectly matches the constraint from $$^{87}$$ 87 Rb cold-atom-recoil experiment. If we consider that the same strength from the additional logarithmic term in the entropy from both GUP and SL model are dependent, for $$\beta < 2\times 10^{-7}$$ β < 2 × 10 - 7 MeV $$^{-2}$$ - 2 , it is clear that SL parameter lower bound is $${\tilde{c}} > -16\times 10^{-34}$$ c ~ > - 16 × 10 - 34 m $$^2$$ 2 . The magnitude of this bound is $$10^{-40}$$ 10 - 40 smaller than the upper bound magnitude of SL parameter considering as independent parameter i.e., $${\tilde{c}} \le 10^7$$ c ~ ≤ 10 7 m $$^2$$ 2 . |
first_indexed | 2024-04-13T22:44:39Z |
format | Article |
id | doaj.art-6a003b45a9e64717a80f6c3c57f31024 |
institution | Directory Open Access Journal |
issn | 1434-6052 |
language | English |
last_indexed | 2024-04-13T22:44:39Z |
publishDate | 2022-10-01 |
publisher | SpringerOpen |
record_format | Article |
series | European Physical Journal C: Particles and Fields |
spelling | doaj.art-6a003b45a9e64717a80f6c3c57f310242022-12-22T02:26:27ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60522022-10-01821011310.1140/epjc/s10052-022-10849-1Minimal length, nuclear matter, and neutron starsI. Prasetyo0I. H. Belfaqih1A. B. Wahidin2A. Suroso3A. Sulaksono4Department of General Education, Faculty of Art and Sciences, Sampoerna UniversityDepartment of General Education, Faculty of Art and Sciences, Sampoerna UniversityProdi Sains Atmosfer dan Keplanetan, Jurusan Sains Institut Teknologi SumateraTheoretical High Energy Physics Research Division, Institut Teknologi BandungDepartemen Fisika FMIPA Universitas IndonesiaAbstract In this paper, we employ one variant of the Generalized Uncertainty Principle (GUP) model, i.e., the Kempf–Mangano–Mann (KMM) model, and discuss the impact of GUP on the EoS of nuclear and neutron star matter based on the relativistic mean field (RMF) model. We input the result in the Serrano–Liška (SL) gravity theory to discuss the corresponding Neutron Star (NS) properties. We have shown that the upper bound for the GUP parameter from nuclear matter properties is $$\beta \le 2\times 10^{-7}$$ β ≤ 2 × 10 - 7 MeV $$^{-2}$$ - 2 . If we used this $$\beta $$ β upper bound to calculate NS matter, and considering SL parameter $${\tilde{c}}$$ c ~ as an independent parameter, we have found that the upper bound for the SL parameter, which modifies the Einstein field equation, is $${\tilde{c}} \le 10^7$$ c ~ ≤ 10 7 m $$^2$$ 2 . This beta upper bound is determined by considering the anisotropy magnitude smaller than the pressure magnitude. By employing $$\beta =2\times 10^{-7}$$ β = 2 × 10 - 7 MeV $$^{-2}$$ - 2 and $${\tilde{c}} = 10^7$$ c ~ = 10 7 m $$^2$$ 2 , we obtain the mass–radius relation that satisfies NICER data for both PSR J0740+6620 (whose mass is $$\sim 2.1M_\odot $$ ∼ 2.1 M ⊙ ) and PSR J0030+0451 ( $$M\sim 1.4M_\odot $$ M ∼ 1.4 M ⊙ ). Our GUP parameter upper bound perfectly matches the constraint from $$^{87}$$ 87 Rb cold-atom-recoil experiment. If we consider that the same strength from the additional logarithmic term in the entropy from both GUP and SL model are dependent, for $$\beta < 2\times 10^{-7}$$ β < 2 × 10 - 7 MeV $$^{-2}$$ - 2 , it is clear that SL parameter lower bound is $${\tilde{c}} > -16\times 10^{-34}$$ c ~ > - 16 × 10 - 34 m $$^2$$ 2 . The magnitude of this bound is $$10^{-40}$$ 10 - 40 smaller than the upper bound magnitude of SL parameter considering as independent parameter i.e., $${\tilde{c}} \le 10^7$$ c ~ ≤ 10 7 m $$^2$$ 2 .https://doi.org/10.1140/epjc/s10052-022-10849-1 |
spellingShingle | I. Prasetyo I. H. Belfaqih A. B. Wahidin A. Suroso A. Sulaksono Minimal length, nuclear matter, and neutron stars European Physical Journal C: Particles and Fields |
title | Minimal length, nuclear matter, and neutron stars |
title_full | Minimal length, nuclear matter, and neutron stars |
title_fullStr | Minimal length, nuclear matter, and neutron stars |
title_full_unstemmed | Minimal length, nuclear matter, and neutron stars |
title_short | Minimal length, nuclear matter, and neutron stars |
title_sort | minimal length nuclear matter and neutron stars |
url | https://doi.org/10.1140/epjc/s10052-022-10849-1 |
work_keys_str_mv | AT iprasetyo minimallengthnuclearmatterandneutronstars AT ihbelfaqih minimallengthnuclearmatterandneutronstars AT abwahidin minimallengthnuclearmatterandneutronstars AT asuroso minimallengthnuclearmatterandneutronstars AT asulaksono minimallengthnuclearmatterandneutronstars |