A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data
This paper is primarily concerned with an event observed from 16:30 to 24:30 UT on 29 October 2010 during a very geomagnetically quiet interval (Kp ≤ 1). The sodium LIDAR observations conducted at Tromsø, Norway (69.6° N, 19.2° E) captured a clearly discernible gravity wave (G...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2014-10-01
|
Series: | Annales Geophysicae |
Online Access: | https://www.ann-geophys.net/32/1195/2014/angeo-32-1195-2014.pdf |
_version_ | 1818237689325944832 |
---|---|
author | T. Takahashi S. Nozawa M. Tsutsumi C. Hall S. Suzuki T. T. Tsuda T. D. Kawahara N. Saito S. Oyama S. Wada T. Kawabata H. Fujiwara A. Brekke A. Manson C. Meek R. Fujii |
author_facet | T. Takahashi S. Nozawa M. Tsutsumi C. Hall S. Suzuki T. T. Tsuda T. D. Kawahara N. Saito S. Oyama S. Wada T. Kawabata H. Fujiwara A. Brekke A. Manson C. Meek R. Fujii |
author_sort | T. Takahashi |
collection | DOAJ |
description | This paper is primarily concerned with an event observed from 16:30 to
24:30 UT on 29 October 2010 during a very geomagnetically quiet interval
(Kp ≤ 1). The sodium LIDAR observations conducted at Tromsø, Norway
(69.6° N, 19.2° E) captured a clearly discernible gravity
wave (GW) signature. Derived vertical and horizontal wavelengths, maximum
amplitude, apparent and intrinsic period, and horizontal phase velocity were
about ~ 11.9 km, ~ 1.38 × 10<sup>3</sup> km, ~ 15 K, 4 h,
~ 7.7 h, and ~ 96 m s<sup>−1</sup>, respectively, between a height of 80 and 95 km. Of particular
interest is a temporal development of the uppermost altitude that the GW
reached. The GW disappeared around 95 km height between 16:30 and 21:00 UT,
while after 21:00 UT the GW appeared to propagate to higher altitudes (above
100 km). We have evaluated three mechanisms (critical-level filtering,
convective and dynamic instabilities) for dissipations using data obtained by
the sodium LIDAR and a meteor radar. It is found that critical-level
filtering did not occur, and the convective and dynamic instabilities
occurred on some occasions. MF radar echo power showed significant
enhancements between 18:30 and 21:00 UT, and an overturning feature of the
sodium mixing ratio was observed between 18:30 and 21:20 UT above about
95 km. From these results, we have concluded that the GW was dissipated by wave breaking and instabilities before 21:00 UT. We have also
investigated the difference of the background atmosphere for the two
intervals and would suggest that a probable cause of the change in the GW
propagation was due to the difference in the temperature gradient of the
background atmosphere above 94 km. |
first_indexed | 2024-12-12T12:29:45Z |
format | Article |
id | doaj.art-6a027e6b844243328bb96bbf8f83b81f |
institution | Directory Open Access Journal |
issn | 0992-7689 1432-0576 |
language | English |
last_indexed | 2024-12-12T12:29:45Z |
publishDate | 2014-10-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Annales Geophysicae |
spelling | doaj.art-6a027e6b844243328bb96bbf8f83b81f2022-12-22T00:24:26ZengCopernicus PublicationsAnnales Geophysicae0992-76891432-05762014-10-01321195120510.5194/angeo-32-1195-2014A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar dataT. Takahashi0S. Nozawa1M. Tsutsumi2C. Hall3S. Suzuki4T. T. Tsuda5T. D. Kawahara6N. Saito7S. Oyama8S. Wada9T. Kawabata10H. Fujiwara11A. Brekke12A. Manson13C. Meek14R. Fujii15Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, JapanSolar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, JapanNational Institute of Polar Research, Tachikawa, Tokyo, JapanTromsø Geophysical Observatory, University of Tromsø, Tromsø, NorwaySolar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, JapanNational Institute of Polar Research, Tachikawa, Tokyo, JapanFaculty of Engineering, Shinshu University, Nagano, Nagano, JapanRIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama, JapanSolar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, JapanRIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama, JapanSolar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, JapanFaculty of Science and Technology, Seikei University, Musashino, Tokyo, JapanFaculty of Science, University of Tromsø, Tromsø, NorwayInstitute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaInstitute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaSolar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, JapanThis paper is primarily concerned with an event observed from 16:30 to 24:30 UT on 29 October 2010 during a very geomagnetically quiet interval (Kp ≤ 1). The sodium LIDAR observations conducted at Tromsø, Norway (69.6° N, 19.2° E) captured a clearly discernible gravity wave (GW) signature. Derived vertical and horizontal wavelengths, maximum amplitude, apparent and intrinsic period, and horizontal phase velocity were about ~ 11.9 km, ~ 1.38 × 10<sup>3</sup> km, ~ 15 K, 4 h, ~ 7.7 h, and ~ 96 m s<sup>−1</sup>, respectively, between a height of 80 and 95 km. Of particular interest is a temporal development of the uppermost altitude that the GW reached. The GW disappeared around 95 km height between 16:30 and 21:00 UT, while after 21:00 UT the GW appeared to propagate to higher altitudes (above 100 km). We have evaluated three mechanisms (critical-level filtering, convective and dynamic instabilities) for dissipations using data obtained by the sodium LIDAR and a meteor radar. It is found that critical-level filtering did not occur, and the convective and dynamic instabilities occurred on some occasions. MF radar echo power showed significant enhancements between 18:30 and 21:00 UT, and an overturning feature of the sodium mixing ratio was observed between 18:30 and 21:20 UT above about 95 km. From these results, we have concluded that the GW was dissipated by wave breaking and instabilities before 21:00 UT. We have also investigated the difference of the background atmosphere for the two intervals and would suggest that a probable cause of the change in the GW propagation was due to the difference in the temperature gradient of the background atmosphere above 94 km.https://www.ann-geophys.net/32/1195/2014/angeo-32-1195-2014.pdf |
spellingShingle | T. Takahashi S. Nozawa M. Tsutsumi C. Hall S. Suzuki T. T. Tsuda T. D. Kawahara N. Saito S. Oyama S. Wada T. Kawabata H. Fujiwara A. Brekke A. Manson C. Meek R. Fujii A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data Annales Geophysicae |
title | A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data |
title_full | A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data |
title_fullStr | A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data |
title_full_unstemmed | A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data |
title_short | A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data |
title_sort | case study of gravity wave dissipation in the polar mlt region using sodium lidar and radar data |
url | https://www.ann-geophys.net/32/1195/2014/angeo-32-1195-2014.pdf |
work_keys_str_mv | AT ttakahashi acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT snozawa acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT mtsutsumi acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT chall acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT ssuzuki acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT tttsuda acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT tdkawahara acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT nsaito acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT soyama acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT swada acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT tkawabata acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT hfujiwara acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT abrekke acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT amanson acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT cmeek acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT rfujii acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT ttakahashi casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT snozawa casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT mtsutsumi casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT chall casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT ssuzuki casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT tttsuda casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT tdkawahara casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT nsaito casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT soyama casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT swada casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT tkawabata casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT hfujiwara casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT abrekke casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT amanson casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT cmeek casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata AT rfujii casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata |