A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data

This paper is primarily concerned with an event observed from 16:30 to 24:30 UT on 29 October 2010 during a very geomagnetically quiet interval (Kp ≤ 1). The sodium LIDAR observations conducted at Tromsø, Norway (69.6° N, 19.2° E) captured a clearly discernible gravity wave (G...

Full description

Bibliographic Details
Main Authors: T. Takahashi, S. Nozawa, M. Tsutsumi, C. Hall, S. Suzuki, T. T. Tsuda, T. D. Kawahara, N. Saito, S. Oyama, S. Wada, T. Kawabata, H. Fujiwara, A. Brekke, A. Manson, C. Meek, R. Fujii
Format: Article
Language:English
Published: Copernicus Publications 2014-10-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/32/1195/2014/angeo-32-1195-2014.pdf
_version_ 1818237689325944832
author T. Takahashi
S. Nozawa
M. Tsutsumi
C. Hall
S. Suzuki
T. T. Tsuda
T. D. Kawahara
N. Saito
S. Oyama
S. Wada
T. Kawabata
H. Fujiwara
A. Brekke
A. Manson
C. Meek
R. Fujii
author_facet T. Takahashi
S. Nozawa
M. Tsutsumi
C. Hall
S. Suzuki
T. T. Tsuda
T. D. Kawahara
N. Saito
S. Oyama
S. Wada
T. Kawabata
H. Fujiwara
A. Brekke
A. Manson
C. Meek
R. Fujii
author_sort T. Takahashi
collection DOAJ
description This paper is primarily concerned with an event observed from 16:30 to 24:30 UT on 29 October 2010 during a very geomagnetically quiet interval (Kp &leq; 1). The sodium LIDAR observations conducted at Troms&oslash;, Norway (69.6° N, 19.2° E) captured a clearly discernible gravity wave (GW) signature. Derived vertical and horizontal wavelengths, maximum amplitude, apparent and intrinsic period, and horizontal phase velocity were about ~ 11.9 km, ~ 1.38 &times; 10<sup>3</sup> km, ~ 15 K, 4 h, ~ 7.7 h, and ~ 96 m s<sup>−1</sup>, respectively, between a height of 80 and 95 km. Of particular interest is a temporal development of the uppermost altitude that the GW reached. The GW disappeared around 95 km height between 16:30 and 21:00 UT, while after 21:00 UT the GW appeared to propagate to higher altitudes (above 100 km). We have evaluated three mechanisms (critical-level filtering, convective and dynamic instabilities) for dissipations using data obtained by the sodium LIDAR and a meteor radar. It is found that critical-level filtering did not occur, and the convective and dynamic instabilities occurred on some occasions. MF radar echo power showed significant enhancements between 18:30 and 21:00 UT, and an overturning feature of the sodium mixing ratio was observed between 18:30 and 21:20 UT above about 95 km. From these results, we have concluded that the GW was dissipated by wave breaking and instabilities before 21:00 UT. We have also investigated the difference of the background atmosphere for the two intervals and would suggest that a probable cause of the change in the GW propagation was due to the difference in the temperature gradient of the background atmosphere above 94 km.
first_indexed 2024-12-12T12:29:45Z
format Article
id doaj.art-6a027e6b844243328bb96bbf8f83b81f
institution Directory Open Access Journal
issn 0992-7689
1432-0576
language English
last_indexed 2024-12-12T12:29:45Z
publishDate 2014-10-01
publisher Copernicus Publications
record_format Article
series Annales Geophysicae
spelling doaj.art-6a027e6b844243328bb96bbf8f83b81f2022-12-22T00:24:26ZengCopernicus PublicationsAnnales Geophysicae0992-76891432-05762014-10-01321195120510.5194/angeo-32-1195-2014A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar dataT. Takahashi0S. Nozawa1M. Tsutsumi2C. Hall3S. Suzuki4T. T. Tsuda5T. D. Kawahara6N. Saito7S. Oyama8S. Wada9T. Kawabata10H. Fujiwara11A. Brekke12A. Manson13C. Meek14R. Fujii15Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, JapanSolar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, JapanNational Institute of Polar Research, Tachikawa, Tokyo, JapanTroms&oslash; Geophysical Observatory, University of Troms&oslash;, Troms&oslash;, NorwaySolar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, JapanNational Institute of Polar Research, Tachikawa, Tokyo, JapanFaculty of Engineering, Shinshu University, Nagano, Nagano, JapanRIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama, JapanSolar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, JapanRIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama, JapanSolar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, JapanFaculty of Science and Technology, Seikei University, Musashino, Tokyo, JapanFaculty of Science, University of Troms&oslash;, Troms&oslash;, NorwayInstitute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaInstitute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaSolar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, JapanThis paper is primarily concerned with an event observed from 16:30 to 24:30 UT on 29 October 2010 during a very geomagnetically quiet interval (Kp &leq; 1). The sodium LIDAR observations conducted at Troms&oslash;, Norway (69.6° N, 19.2° E) captured a clearly discernible gravity wave (GW) signature. Derived vertical and horizontal wavelengths, maximum amplitude, apparent and intrinsic period, and horizontal phase velocity were about ~ 11.9 km, ~ 1.38 &times; 10<sup>3</sup> km, ~ 15 K, 4 h, ~ 7.7 h, and ~ 96 m s<sup>−1</sup>, respectively, between a height of 80 and 95 km. Of particular interest is a temporal development of the uppermost altitude that the GW reached. The GW disappeared around 95 km height between 16:30 and 21:00 UT, while after 21:00 UT the GW appeared to propagate to higher altitudes (above 100 km). We have evaluated three mechanisms (critical-level filtering, convective and dynamic instabilities) for dissipations using data obtained by the sodium LIDAR and a meteor radar. It is found that critical-level filtering did not occur, and the convective and dynamic instabilities occurred on some occasions. MF radar echo power showed significant enhancements between 18:30 and 21:00 UT, and an overturning feature of the sodium mixing ratio was observed between 18:30 and 21:20 UT above about 95 km. From these results, we have concluded that the GW was dissipated by wave breaking and instabilities before 21:00 UT. We have also investigated the difference of the background atmosphere for the two intervals and would suggest that a probable cause of the change in the GW propagation was due to the difference in the temperature gradient of the background atmosphere above 94 km.https://www.ann-geophys.net/32/1195/2014/angeo-32-1195-2014.pdf
spellingShingle T. Takahashi
S. Nozawa
M. Tsutsumi
C. Hall
S. Suzuki
T. T. Tsuda
T. D. Kawahara
N. Saito
S. Oyama
S. Wada
T. Kawabata
H. Fujiwara
A. Brekke
A. Manson
C. Meek
R. Fujii
A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data
Annales Geophysicae
title A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data
title_full A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data
title_fullStr A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data
title_full_unstemmed A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data
title_short A case study of gravity wave dissipation in the polar MLT region using sodium LIDAR and radar data
title_sort case study of gravity wave dissipation in the polar mlt region using sodium lidar and radar data
url https://www.ann-geophys.net/32/1195/2014/angeo-32-1195-2014.pdf
work_keys_str_mv AT ttakahashi acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT snozawa acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT mtsutsumi acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT chall acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT ssuzuki acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT tttsuda acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT tdkawahara acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT nsaito acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT soyama acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT swada acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT tkawabata acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT hfujiwara acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT abrekke acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT amanson acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT cmeek acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT rfujii acasestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT ttakahashi casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT snozawa casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT mtsutsumi casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT chall casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT ssuzuki casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT tttsuda casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT tdkawahara casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT nsaito casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT soyama casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT swada casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT tkawabata casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT hfujiwara casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT abrekke casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT amanson casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT cmeek casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata
AT rfujii casestudyofgravitywavedissipationinthepolarmltregionusingsodiumlidarandradardata