Capturing the variety of clinical pathways in patients with schizophrenic disorders through state sequences analysis
Abstract Background Care pathways are increasingly being used to enhance the quality of care and optimize the use of resources for health care. Nevertheless, recommendations regarding the sequence of care are mostly based on consensus-based decisions as there is a lack of evidence on effective treat...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2023-07-01
|
Series: | BMC Medical Research Methodology |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12874-023-01993-7 |
_version_ | 1797769437464494080 |
---|---|
author | Laura Savaré Francesca Ieva Giovanni Corrao Antonio Lora |
author_facet | Laura Savaré Francesca Ieva Giovanni Corrao Antonio Lora |
author_sort | Laura Savaré |
collection | DOAJ |
description | Abstract Background Care pathways are increasingly being used to enhance the quality of care and optimize the use of resources for health care. Nevertheless, recommendations regarding the sequence of care are mostly based on consensus-based decisions as there is a lack of evidence on effective treatment sequences. In a real-world setting, classical statistical tools were insufficient to consider a phenomenon with such high variability adequately and have to be integrated with novel data mining techniques suitable for identifying patterns in complex data structures. Data-driven techniques can potentially support empirically identifying effective care sequences by extracting them from data collected routinely. The purpose of this study is to perform a state sequence analysis (SSA) to identify different patterns of treatment and to asses whether sequence analysis may be a useful tool for profiling patients according to the treatment pattern. Methods The clinical application that motivated the study of this method concerns the mental health field. In fact, the care pathways of patients affected by severe mental disorders often do not correspond to the standards required by the guidelines in this field. In particular, we analyzed patients with schizophrenic disorders (i.e., schizophrenia, schizotypal or delusional disorders) using administrative data from 2015 to 2018 from Lombardy Region. This methodology considers the patient’s therapeutic path as a conceptual unit, composed of a succession of different states, and we show how SSA can be used to describe longitudinal patient status. Results We define the states to be the weekly coverage of different treatments (psychiatric visits, psychosocial interventions, and anti-psychotic drugs), and we use the longest common subsequences (dis)similarity measure to compare and cluster the sequences. We obtained three different clusters with very different patterns of treatments. Conclusions This kind of information, such as common patterns of care that allowed us to risk profile patients, can provide health policymakers an opportunity to plan optimum and individualized patient care by allocating appropriate resources, analyzing trends in the health status of a population, and finding the risk factors that can be leveraged to prevent the decline of mental health status at the population level. |
first_indexed | 2024-03-12T21:09:00Z |
format | Article |
id | doaj.art-6a06ff6d95334610a7c4e250eca5a6b8 |
institution | Directory Open Access Journal |
issn | 1471-2288 |
language | English |
last_indexed | 2024-03-12T21:09:00Z |
publishDate | 2023-07-01 |
publisher | BMC |
record_format | Article |
series | BMC Medical Research Methodology |
spelling | doaj.art-6a06ff6d95334610a7c4e250eca5a6b82023-07-30T11:18:35ZengBMCBMC Medical Research Methodology1471-22882023-07-0123111410.1186/s12874-023-01993-7Capturing the variety of clinical pathways in patients with schizophrenic disorders through state sequences analysisLaura Savaré0Francesca Ieva1Giovanni Corrao2Antonio Lora3MOX - Department of Mathematics, Politecnico di MilanoMOX - Department of Mathematics, Politecnico di MilanoNational Centre for Healthcare Research and Pharmacoepidemiology, University of Milano-BicoccaNational Centre for Healthcare Research and Pharmacoepidemiology, University of Milano-BicoccaAbstract Background Care pathways are increasingly being used to enhance the quality of care and optimize the use of resources for health care. Nevertheless, recommendations regarding the sequence of care are mostly based on consensus-based decisions as there is a lack of evidence on effective treatment sequences. In a real-world setting, classical statistical tools were insufficient to consider a phenomenon with such high variability adequately and have to be integrated with novel data mining techniques suitable for identifying patterns in complex data structures. Data-driven techniques can potentially support empirically identifying effective care sequences by extracting them from data collected routinely. The purpose of this study is to perform a state sequence analysis (SSA) to identify different patterns of treatment and to asses whether sequence analysis may be a useful tool for profiling patients according to the treatment pattern. Methods The clinical application that motivated the study of this method concerns the mental health field. In fact, the care pathways of patients affected by severe mental disorders often do not correspond to the standards required by the guidelines in this field. In particular, we analyzed patients with schizophrenic disorders (i.e., schizophrenia, schizotypal or delusional disorders) using administrative data from 2015 to 2018 from Lombardy Region. This methodology considers the patient’s therapeutic path as a conceptual unit, composed of a succession of different states, and we show how SSA can be used to describe longitudinal patient status. Results We define the states to be the weekly coverage of different treatments (psychiatric visits, psychosocial interventions, and anti-psychotic drugs), and we use the longest common subsequences (dis)similarity measure to compare and cluster the sequences. We obtained three different clusters with very different patterns of treatments. Conclusions This kind of information, such as common patterns of care that allowed us to risk profile patients, can provide health policymakers an opportunity to plan optimum and individualized patient care by allocating appropriate resources, analyzing trends in the health status of a population, and finding the risk factors that can be leveraged to prevent the decline of mental health status at the population level.https://doi.org/10.1186/s12874-023-01993-7State sequence analysisCare pathwaysSchizophrenic disorder |
spellingShingle | Laura Savaré Francesca Ieva Giovanni Corrao Antonio Lora Capturing the variety of clinical pathways in patients with schizophrenic disorders through state sequences analysis BMC Medical Research Methodology State sequence analysis Care pathways Schizophrenic disorder |
title | Capturing the variety of clinical pathways in patients with schizophrenic disorders through state sequences analysis |
title_full | Capturing the variety of clinical pathways in patients with schizophrenic disorders through state sequences analysis |
title_fullStr | Capturing the variety of clinical pathways in patients with schizophrenic disorders through state sequences analysis |
title_full_unstemmed | Capturing the variety of clinical pathways in patients with schizophrenic disorders through state sequences analysis |
title_short | Capturing the variety of clinical pathways in patients with schizophrenic disorders through state sequences analysis |
title_sort | capturing the variety of clinical pathways in patients with schizophrenic disorders through state sequences analysis |
topic | State sequence analysis Care pathways Schizophrenic disorder |
url | https://doi.org/10.1186/s12874-023-01993-7 |
work_keys_str_mv | AT laurasavare capturingthevarietyofclinicalpathwaysinpatientswithschizophrenicdisordersthroughstatesequencesanalysis AT francescaieva capturingthevarietyofclinicalpathwaysinpatientswithschizophrenicdisordersthroughstatesequencesanalysis AT giovannicorrao capturingthevarietyofclinicalpathwaysinpatientswithschizophrenicdisordersthroughstatesequencesanalysis AT antoniolora capturingthevarietyofclinicalpathwaysinpatientswithschizophrenicdisordersthroughstatesequencesanalysis |