Comparison of Two-Component Silyl-Terminated Polyether/Epoxy Resin Model and Complete Systems and Evaluation of Their Mechanical, Rheological and Adhesive Properties

The current research is devoted to the investigation of the influence of a secondary amine compatibilizer and customized additive package on the tensile, rheological and adhesive properties of a Silyl-terminated polyether (SIL)/Epoxy resin (EP) model and completed two-component systems. A SIL/EP mod...

Full description

Bibliographic Details
Main Authors: Ritvars Berzins, Remo Merijs-Meri, Janis Zicans
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/14/12/2421
Description
Summary:The current research is devoted to the investigation of the influence of a secondary amine compatibilizer and customized additive package on the tensile, rheological and adhesive properties of a Silyl-terminated polyether (SIL)/Epoxy resin (EP) model and completed two-component systems. A SIL/EP model and completed two-component systems were developed over a broad range of the both pre-polymer ratios (90/10–30/70 wt.-to-wt%). Additive packages of the components A and B were designed to prevent premature polycondensation of the respective pre-polymers (including suitable catalysts for each of the pre-polymers, as well as vinyltrimetoxysilane as a drying agent for moisture control), to ensure easy processing and stable performance of the system. Results of the investigation testify that the values of the tensile strength and Shore-A hardness of the compatibilized systems are higher in comparison to unmodified ones. In the presence of the additive package, a further improvement of tensile strength and tensile strain values is observed for SIL-rich compositions (SIL content above 70 wt%), whereas at lower SIL concentrations, the reinforcing effect is considerably reduced. In respects to adhesion properties, the highest values to a broad range of substrates with different surface polarities are observed at the SIL/EP range from 80/20 to 50/50 wt.-to-wt%.
ISSN:2073-4360