Single-nucleus and bulk RNA sequencing reveal cellular and transcriptional mechanisms underlying lipid dynamics in high marbled pork
Abstract Pork is the most consumed meat in the world, and its quality is associated with human health. Intramuscular fat (IMF) deposition (also called marbling) is a key factor positively correlated with various quality traits and lipo-nutritional values of meat. However, the cell dynamics and trans...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-06-01
|
Series: | npj Science of Food |
Online Access: | https://doi.org/10.1038/s41538-023-00203-4 |
_version_ | 1797811270834978816 |
---|---|
author | Liyi Wang Xueyan Zhao Shiqi Liu Wenjing You Yuqin Huang Yanbing Zhou Wentao Chen Shu Zhang Jiying Wang Qiankun Zheng Yizhen Wang Tizhong Shan |
author_facet | Liyi Wang Xueyan Zhao Shiqi Liu Wenjing You Yuqin Huang Yanbing Zhou Wentao Chen Shu Zhang Jiying Wang Qiankun Zheng Yizhen Wang Tizhong Shan |
author_sort | Liyi Wang |
collection | DOAJ |
description | Abstract Pork is the most consumed meat in the world, and its quality is associated with human health. Intramuscular fat (IMF) deposition (also called marbling) is a key factor positively correlated with various quality traits and lipo-nutritional values of meat. However, the cell dynamics and transcriptional programs underlying lipid deposition in highly marbled meat are still unclear. Here, we used Laiwu pigs with high (HLW) or low (LLW) IMF contents to explore the cellular and transcriptional mechanisms underlying lipid deposition in highly-marbled pork by single-nucleus RNA sequencing (snRNA-seq) and bulk RNA sequencing. The HLW group had higher IMF contents but less drip loss than the LLW group. Lipidomics results revelled the changes of overall lipid classes composition (e.g., glycerolipids including triglycerides, diglycerides, and monoglycerides; sphingolipids including ceramides and monohexose ceramide significantly increased) between HLW and LLW groups. SnRNA-seq revealed nine distinct cell clusters, and the HLW group had a higher percentage of adipocytes (1.40% vs. 0.17%) than the LLW group. We identified 3 subpopulations of adipocytes, including PDE4D+/PDE7B+ (in HLW and LLW), DGAT2+/SCD+ (mostly in HLW) and FABP5+/SIAH1+ cells (mostly in HLW). Moreover, we showed that fibro/adipogenic progenitors could differentiate into IMF cells and contribute to 43.35% of adipocytes in mice. In addition, RNA-seq revealed different genes involved in lipid metabolism and fatty acid elongation. Our study provides new insights into the cellular and molecular signatures of marbling formation; such knowledge may facilitate the development of new strategies to increase IMF deposition and the lipo-nutritional quality of high marbled pork. |
first_indexed | 2024-03-13T07:21:13Z |
format | Article |
id | doaj.art-6a113cd9eb614d248e4bf97b918b9949 |
institution | Directory Open Access Journal |
issn | 2396-8370 |
language | English |
last_indexed | 2024-03-13T07:21:13Z |
publishDate | 2023-06-01 |
publisher | Nature Portfolio |
record_format | Article |
series | npj Science of Food |
spelling | doaj.art-6a113cd9eb614d248e4bf97b918b99492023-06-04T11:39:26ZengNature Portfolionpj Science of Food2396-83702023-06-017111510.1038/s41538-023-00203-4Single-nucleus and bulk RNA sequencing reveal cellular and transcriptional mechanisms underlying lipid dynamics in high marbled porkLiyi Wang0Xueyan Zhao1Shiqi Liu2Wenjing You3Yuqin Huang4Yanbing Zhou5Wentao Chen6Shu Zhang7Jiying Wang8Qiankun Zheng9Yizhen Wang10Tizhong Shan11College of Animal Sciences, Zhejiang UniversityInstitute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural SciencesCollege of Animal Sciences, Zhejiang UniversityCollege of Animal Sciences, Zhejiang UniversityCollege of Animal Sciences, Zhejiang UniversityCollege of Animal Sciences, Zhejiang UniversityCollege of Animal Sciences, Zhejiang UniversityCollege of Animal Sciences, Zhejiang UniversityInstitute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural SciencesDELISI GROUP Co. LtdCollege of Animal Sciences, Zhejiang UniversityCollege of Animal Sciences, Zhejiang UniversityAbstract Pork is the most consumed meat in the world, and its quality is associated with human health. Intramuscular fat (IMF) deposition (also called marbling) is a key factor positively correlated with various quality traits and lipo-nutritional values of meat. However, the cell dynamics and transcriptional programs underlying lipid deposition in highly marbled meat are still unclear. Here, we used Laiwu pigs with high (HLW) or low (LLW) IMF contents to explore the cellular and transcriptional mechanisms underlying lipid deposition in highly-marbled pork by single-nucleus RNA sequencing (snRNA-seq) and bulk RNA sequencing. The HLW group had higher IMF contents but less drip loss than the LLW group. Lipidomics results revelled the changes of overall lipid classes composition (e.g., glycerolipids including triglycerides, diglycerides, and monoglycerides; sphingolipids including ceramides and monohexose ceramide significantly increased) between HLW and LLW groups. SnRNA-seq revealed nine distinct cell clusters, and the HLW group had a higher percentage of adipocytes (1.40% vs. 0.17%) than the LLW group. We identified 3 subpopulations of adipocytes, including PDE4D+/PDE7B+ (in HLW and LLW), DGAT2+/SCD+ (mostly in HLW) and FABP5+/SIAH1+ cells (mostly in HLW). Moreover, we showed that fibro/adipogenic progenitors could differentiate into IMF cells and contribute to 43.35% of adipocytes in mice. In addition, RNA-seq revealed different genes involved in lipid metabolism and fatty acid elongation. Our study provides new insights into the cellular and molecular signatures of marbling formation; such knowledge may facilitate the development of new strategies to increase IMF deposition and the lipo-nutritional quality of high marbled pork.https://doi.org/10.1038/s41538-023-00203-4 |
spellingShingle | Liyi Wang Xueyan Zhao Shiqi Liu Wenjing You Yuqin Huang Yanbing Zhou Wentao Chen Shu Zhang Jiying Wang Qiankun Zheng Yizhen Wang Tizhong Shan Single-nucleus and bulk RNA sequencing reveal cellular and transcriptional mechanisms underlying lipid dynamics in high marbled pork npj Science of Food |
title | Single-nucleus and bulk RNA sequencing reveal cellular and transcriptional mechanisms underlying lipid dynamics in high marbled pork |
title_full | Single-nucleus and bulk RNA sequencing reveal cellular and transcriptional mechanisms underlying lipid dynamics in high marbled pork |
title_fullStr | Single-nucleus and bulk RNA sequencing reveal cellular and transcriptional mechanisms underlying lipid dynamics in high marbled pork |
title_full_unstemmed | Single-nucleus and bulk RNA sequencing reveal cellular and transcriptional mechanisms underlying lipid dynamics in high marbled pork |
title_short | Single-nucleus and bulk RNA sequencing reveal cellular and transcriptional mechanisms underlying lipid dynamics in high marbled pork |
title_sort | single nucleus and bulk rna sequencing reveal cellular and transcriptional mechanisms underlying lipid dynamics in high marbled pork |
url | https://doi.org/10.1038/s41538-023-00203-4 |
work_keys_str_mv | AT liyiwang singlenucleusandbulkrnasequencingrevealcellularandtranscriptionalmechanismsunderlyinglipiddynamicsinhighmarbledpork AT xueyanzhao singlenucleusandbulkrnasequencingrevealcellularandtranscriptionalmechanismsunderlyinglipiddynamicsinhighmarbledpork AT shiqiliu singlenucleusandbulkrnasequencingrevealcellularandtranscriptionalmechanismsunderlyinglipiddynamicsinhighmarbledpork AT wenjingyou singlenucleusandbulkrnasequencingrevealcellularandtranscriptionalmechanismsunderlyinglipiddynamicsinhighmarbledpork AT yuqinhuang singlenucleusandbulkrnasequencingrevealcellularandtranscriptionalmechanismsunderlyinglipiddynamicsinhighmarbledpork AT yanbingzhou singlenucleusandbulkrnasequencingrevealcellularandtranscriptionalmechanismsunderlyinglipiddynamicsinhighmarbledpork AT wentaochen singlenucleusandbulkrnasequencingrevealcellularandtranscriptionalmechanismsunderlyinglipiddynamicsinhighmarbledpork AT shuzhang singlenucleusandbulkrnasequencingrevealcellularandtranscriptionalmechanismsunderlyinglipiddynamicsinhighmarbledpork AT jiyingwang singlenucleusandbulkrnasequencingrevealcellularandtranscriptionalmechanismsunderlyinglipiddynamicsinhighmarbledpork AT qiankunzheng singlenucleusandbulkrnasequencingrevealcellularandtranscriptionalmechanismsunderlyinglipiddynamicsinhighmarbledpork AT yizhenwang singlenucleusandbulkrnasequencingrevealcellularandtranscriptionalmechanismsunderlyinglipiddynamicsinhighmarbledpork AT tizhongshan singlenucleusandbulkrnasequencingrevealcellularandtranscriptionalmechanismsunderlyinglipiddynamicsinhighmarbledpork |