Extraction of Palladium from Spent Nuclear Fuel Reprocessing Solutions

New solvent systems for selective separation of palladium from nuclear wastes represent a prospective way to reduce the total waste volume and induce this metal’s extraction. For this purpose, the potential of modern green solvent room-temperature ionic liquid was assessed with diamide-type extracta...

Full description

Bibliographic Details
Main Authors: Alfiya M. Safiulina, Nataliya E. Borisova, Ekaterina A. Karpyuk, Alexey V. Ivanov, Dmitry A. Lopatin
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/14/2/133
Description
Summary:New solvent systems for selective separation of palladium from nuclear wastes represent a prospective way to reduce the total waste volume and induce this metal’s extraction. For this purpose, the potential of modern green solvent room-temperature ionic liquid was assessed with diamide-type extractants based on N-heterocycles and S-donating thiodiglicolic acid. The N-donating heterocyclic extractants demonstrate structure-dependent high selectivity toward palladium in the presence of various impurity metals (such as Zr, Cs, Sr, Mo, Ce, Fe, and Cr) from spent nuclear fuel. Palladium is extracted into the organic phase quite selectively with a separation factor greater than a thousand for all extractants. Ionic liquid media are capable of selective palladium separation from platinum group metals and synergetically increase the selectivity of the extractants.
ISSN:2075-4701